ترغب بنشر مسار تعليمي؟ اضغط هنا

Moment conditions and lower bounds in expanding solutions of wave equations with double damping terms

63   0   0.0 ( 0 )
 نشر من قبل Ryo Ikehata
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this report we obtain higher order asymptotic expansions of solutions to wave equations with frictional and viscoelastic damping terms. Although the diffusion phenomena are dominant, differences between the solutions we deal with and those of heat equations can be seen by comparing the second order expansions of them. In order to analyze such effects we consider the weighted L1 initial data. We also give some lower bounds which show the optimality of obtained expansions.



قيم البحث

اقرأ أيضاً

69 - Hironori Michihisa 2018
We analyze the asymptotic behavior of solutions to wave equations with strong damping terms. If the initial data belong to suitable weighted $L^1$ spaces, lower bounds for the difference between the solutions and the leading terms in the Fourier spac e are obtained, which implies the optimality of expanding methods and some estimates proposed in this paper.
101 - Taeko Yamazaki 2018
This paper is concerned with the initial value problem for semilinear wave equation with structural damping $u_{tt}+(-Delta)^{sigma}u_t -Delta u =f(u)$, where $sigma in (0,frac{1}{2})$ and $f(u) sim |u|^p$ or $u |u|^{p-1}$ with $p> 1 + {2}/(n - 2 sig ma)$. We first show the global existence for initial data small in some weighted Sobolev spaces on $mathcal R^n$ ($n ge 2$). Next, we show that the asymptotic profile of the solution above is given by a constant multiple of the fundamental solution of the corresponding parabolic equation, provided the initial data belong to weighted $L^1$ spaces.
We study the asymptotic behavior of solutions to wave equations with a structural damping term [ u_{tt}-Delta u+Delta^2 u_t=0, qquad u(0,x)=u_0(x), ,,, u_t(0,x)=u_1(x), ] in the whole space. New thresholds are reported in this paper that indicate whi ch of the diffusion wave property and the non-diffusive structure dominates in low regularity cases. We develop to that end the previous authors research in 2019 where they have proposed a threshold that expresses whether the parabolic-like property or the wave-like property strongly appears in the solution to some regularity-loss type dissipative wave equation.
In this paper we give optimal lower bounds for the blow-up rate of the $dot{H}^{s}left(mathbb{T}^3right)$-norm, $frac{1}{2}<s<frac{5}{2}$, of a putative singular solution of the Navier-Stokes equations, and we also present an elementary proof for a l ower bound on blow-up rate of the Sobolev norms of possible singular solutions to the Euler equations when $s>frac{5}{2}$.
We give pointwise gradient bounds for solutions of (possibly non-uniformly) elliptic partial differential equations in the entire Euclidean space. The operator taken into account is very general and comprises also the singular and degenerate nonlin ear case with non-standard growth conditions. The sourcing term is also allowed to have a very general form, depending on the space variables, on the solution itself, on its gradient, and possibly on higher order derivatives if additional structural conditions are satisfied.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا