ترغب بنشر مسار تعليمي؟ اضغط هنا

Cosmological birefringence due to CPT-even Chern-Simons-like term with Kalb-Ramond and scalar fields

73   0   0.0 ( 0 )
 نشر من قبل W. F. Kao
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the CPT-even dimension-six Chern-Simons-like term by including dynamical Kalb-Ramond and scalar fields to examine the cosmological birefringence. We show that the combined effect of neutrino current and Kalb-Ramond field could induce a sizable rotation polarization angle in the cosmic microwave background radiation polarization.

قيم البحث

اقرأ أيضاً

We investigate the generation of large-scale magnetic fields due to the breaking of the conformal invariance in the electromagnetic field through the $CPT$-even dimension-six Chern-Simons-like effective interaction with a fermion current by taking ac count of the dynamical Kalb-Ramond and scalar fields in inflationary cosmology. It is explicitly demonstrated that the magnetic fields on 1Mpc scale with the field strength of $sim 10^{-9}$G at the present time can be induced.
The radiative induction of the CPT and Lorentz violating Chern-Simons (CS) term is reassessed. The massless and massive models are studied. Special attention is given to the preservation of gauge symmetry at higher orders in the background vector $b_ mu$ when radiative corrections are considered. Both the study of the odd and even parity sectors of the complete vacuum polarization tensor at one-loop order and a non-perturbative analysis show that this symmetry must be preserved by the quantum corrections. As a complement we obtain that transversality of the polarization tensor does not fix the value of the coefficient of the induced CS term.
We investigate gauge/gravity duals with flavour for which pure-gauge Kalb-Ramond B fields are turned on in the background, into which a D7 brane probe is embedded. First we consider the case of a magnetic field in two of the spatial boundary directio ns. We show that at finite temperature, i.e. in the AdS-Schwarzschild background, the B field has a stabilizing effect on the mesons and chiral symmetry breaking occurs for a sufficiently large value of the B field. Then we turn to the electric case of a B field in the temporal direction and one spatial boundary direction. In this case, there is a singular region in which it is necessary to turn on a gauge field on the brane in order to ensure reality of the brane action. We find that the brane embeddings are attracted towards this region. Far away from this region, in the weak field case at zero temperature, we investigate the meson spectrum and find a mass shift similar to the Stark effect.
54 - Neven Bilic , 2005
Unified dark matter/energy models (quartessence) based upon the Chaplygin gas D-brane fail owing to the suppression of structure formation by the adiabatic speed of sound. Including string theory effects, in particular the Kalb-Ramond field which bec omes massive via the brane, we show how nonadiabatic perturbations allow successful structure formation.
We present here a manifestly gauge invariant calculation of vacuum polarization to fermions in the presence of a constant Maxwell and a constant Kalb-Ramond field in four dimensions. The formalism is a generalisation of the one used by Schwinger in h is famous paper on gauge invariance and vacuum polarization. We get an explicit expression for the vacuum polarization induced effective Lagrangian for a constant Maxwell field interacting with a constant Kalb-Ramond field. In the weak field limit we get the coupling between the Maxwell field and the Kalb-Ramond field to be $(tilde{H}.tilde{F})^2$, where ${tilde H}_{mu}= {1over {3!}}epsilon_{mualphabetalambda}H^{alphabetalambda}$ and $tilde F$ is the dual of $F_{mu u}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا