ترغب بنشر مسار تعليمي؟ اضغط هنا

Flows and heterogeneities with a vane tool: Magnetic resonance imaging measurements

125   0   0.0 ( 0 )
 نشر من قبل Guillaume Ovarlez
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Guillaume Ovarlez




اسأل ChatGPT حول البحث

We study the local flow properties of various materials in a vane-in-cup geometry. We use magnetic resonance imaging techniques to measure velocities and particle concentrations in flowing Newtonian fluid, yield stress fluid, and in a concentrated suspension of noncolloidal particles in a yield stress fluid. In the Newtonian fluid, we observe that the $theta$-averaged strain rate component $d_{r,theta}$ decreases as the inverse squared radius in the gap, in agreement with a Couette analogy. This allows direct comparison (without end-effect corrections) of the resistances to shear in vane and Couette geometries. Here, the mean shear stress in the vane-in-cup geometry is slightly lower than in a Couette cell of same dimensions, and a little higher than when the vane is embedded in an infinite medium. We also observe that the flow enters deeply the region between the blades, leading to significant extensional flow. In the yield stress fluid, in contrast with the usually accepted picture based on simulation results from the literature, we find that the layer of material that is sheared near the blades at low velocity is not cylindrical. There is thus a significant extensional component of shear that should be taken into account in the analysis. Finally and surprisingly, in the suspension, we observe that a thin non-cylindrical slip layer made of the pure interstitial yield stress fluid appears quickly at the interface between the sheared material and the material that moves as a rigid body between the blades. This feature can be attributed to the non-symmetric trajectories of the noncolloidal particles around the edges of the blades. This new important observation is in sharp contradiction with the common belief that the vane tool prevents slippage and may preclude the use of the vane tool for studying the flows of pasty materials with large particles.

قيم البحث

اقرأ أيضاً

We present recent advances in the instrumentation and analysis methods for quantitative imaging of concentrated colloidal suspensions under flow. After a brief review of colloidal imaging, we describe various flow geometries for two and and three-dim ensional (3D) imaging, including a `confocal rheoscope. This latter combination of a confocal microscope and a rheometer permits simultaneous characterization of rheological response and 3D microstructural imaging. The main part of the paper discusses in detail how to identify and track particles from confocal images taken during flow. After analyzing the performance of the most commonly used colloid tracking algorithm by Crocker and Grier extended to flowing systems, we propose two new algorithms for reliable particle tracking in non-uniform flows to the level of accuracy already available for quiescent systems. We illustrate the methods by applying it to data collected from colloidal flows in three different geometries (channel flow, parallel plate shear and cone-plate rheometry).
Nuclear magnetic resonance (NMR) imaging with nanometer resolution requires new detection techniques with sensitivity well beyond the capability of conventional inductive detection. Here, we demonstrate two dimensional imaging of $^1$H NMR from an or ganic test sample using a single nitrogen-vacancy center in diamond as the sensor. The NV center detects the oscillating magnetic field from precessing protons in the sample as the sample is scanned past the NV center. A spatial resolution of 12 nm is shown, limited primarily by the scan accuracy. With further development, NV-detected magnetic resonance imaging could lead to a new tool for three-dimensional imaging of complex nanostructures, including biomolecules.
We investigate the heterogeneous dynamics in a model, where chemical gelation and glass transition interplay, focusing on the dynamical susceptibility. Two independent mechanisms give raise to the correlations, which are manifested in the dynamical s usceptibility: one is related to the presence of permanent clusters, while the other is due to the increase of particle crowding as the glass transition is approached. The superposition of these two mechanisms originates a variety of different behaviours. We show that these two mechanisms can be unentangled considering the wave vector dependence of the dynamical susceptibility.
Over almost five decades of development and improvement, Magnetic Resonance Imaging (MRI) has become a rich and powerful, non-invasive technique in medical imaging, yet not reaching its physical limits. Technical and physiological restrictions constr ain physically feasible developments. A common solution to improve imaging speed and resolution is to use higher field strengths, which also has subtle and potentially harmful implications. However, patient safety is to be considered utterly important at all stages of research and clinical routine. Here we show that dynamic metamaterials are a promising solution to expand the potential of MRI and to overcome some limitations. A thin, smart, non-linear metamaterial is presented that enhances the imaging performance and increases the signal-to-noise ratio in 3T MRI significantly (up to eightfold), whilst the transmit field is not affected due to self-detuning and, thus, patient safety is also assured. This self-detuning works without introducing any additional overhead related to MRI-compatible electronic control components or active (de-)tuning mechanisms. The design paradigm, simulation results, on-bench characterization, and MRI experiments using homogeneous and structural phantoms are described. The suggested single-layer metasurface paves the way for conformal and patient-specific manufacturing, which was not possible before due to typically bulky and rigid metamaterial structures.
Magnetic resonance imaging (MRI) revolutionized diagnostic medicine and biomedical research by allowing a noninvasive access to spin ensembles. To enhance MRI resolution to the nanometer scale, new approaches including scanning probe methods have bee n used in recent years, which culminated in detection of individual spins. This allowed three-dimensional (3D) visualization of organic samples and of sophisticated spin-structures. Here, we demonstrate for the first time MRI of individual atoms on a surface. The setup, implemented in a cryogenic scanning tunneling microscope (STM), uses single-atom electron spin resonance (ESR) to achieve sub-{AA}ngstrom resolution exceeding the spatial resolution of previous experiments by one to two orders of magnitude. We find that MRI scans of different atomic species and probe tips lead to unique signatures in the resonance images. These signatures reveal the magnetic interactions between the tip and the atom, in particular magnetic dipolar and exchange interaction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا