ترغب بنشر مسار تعليمي؟ اضغط هنا

Low-mass Star Formation: Observations

133   0   0.0 ( 0 )
 نشر من قبل Neal J. Evans II
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Neal J. Evans II




اسأل ChatGPT حول البحث

I briefly review recent observations of regions forming low mass stars. The discussion is cast in the form of seven questions that have been partially answered, or at least illuminated, by new data. These are the following: where do stars form in molecular clouds; what determines the IMF; how long do the steps of the process take; how efficient is star formation; do any theories explain the data; how are the star and disk built over time; and what chemical changes accompany star and planet formation. I close with a summary and list of open questions.



قيم البحث

اقرأ أيضاً

Using the VLA, we recently detected a large number of protoplanetary disk (proplyd) candidates lying within a couple of light years of the massive black hole Sgr A*. The bow-shock appearance of proplyd candidates point toward the young massive stars located near Sgr A*. Similar to Orion proplyds, the strong UV radiation from the cluster of massive stars at the Galactic center is expected to photoevaporate and photoionize the circumstellar disks around young, low mass stars, thus allowing detection of the ionized outflows from the photoionized layer surrounding cool and dense gaseous disks. To confirm this picture, ALMA observations detect millimeter emission at 226 GHz from five proplyd candidates that had been detected at 44 and 34 GHz with the VLA. We present the derived disk masses for four sources as a function of the assumed dust temperature. The mass of protoplanetary disks from cool dust emission ranges between 0.03 -- 0.05 solar mass. These estimates are consistent with the disk masses found in star forming sites in the Galaxy. These measurements show the presence of on-going star formation with the implication that gas clouds can survive near Sgr A* and the relative importance of high vs low-mass star formation in the strong tidal and radiation fields of the Galactic center.
We present 1.05 mm ALMA observations of the deeply embedded high-mass protocluster G11.92-0.61, designed to search for low-mass cores within the accretion reservoir of the massive protostars. Our ALMA mosaic, which covers an extent of ~0.7 pc at sub- arcsecond (~1400 au) resolution, reveals a rich population of 16 new millimetre continuum sources surrounding the three previously-known millimetre cores. Most of the new sources are located in the outer reaches of the accretion reservoir: the median projected separation from the central, massive (proto)star MM1 is ~0.17 pc. The derived physical properties of the new millimetre continuum sources are consistent with those of low-mass prestellar and protostellar cores in nearby star-forming regions: the median mass, radius, and density of the new sources are 1.3 Msun, 1600 au, and n(H2)~10^7 cm^-3. At least three of the low-mass cores in G11.92-0.61 drive molecular outflows, traced by high-velocity 12CO(3-2) (observed with the SMA) and/or by H2CO and CH3OH emission (observed with ALMA). This finding, combined with the known outflow/accretion activity of MM1, indicates that high- and low-mass stars are forming (accreting) simultaneously within this protocluster. Our ALMA results are consistent with the predictions of competitive-accretion-type models in which high-mass stars form along with their surrounding clusters.
A star acquires much of its mass by accreting material from a disc. Accretion is probably not continuous but episodic. We have developed a method to include the effects of episodic accretion in simulations of star formation. Episodic accretion result s in bursts of radiative feedback, during which a protostar is very luminous, and its surrounding disc is heated and stabilised. These bursts typically last only a few hundred years. In contrast, the lulls between bursts may last a few thousand years; during these lulls the luminosity of the protostar is very low, and its disc cools and fragments. Thus, episodic accretion enables the formation of low-mass stars, brown dwarfs and planetary-mass objects by disc fragmentation. If episodic accretion is a common phenomenon among young protostars, then the frequency and duration of accretion bursts may be critical in determining the low-mass end of the stellar initial mass function.
Four Class I maser sources were detected at 44, 84, and 95 GHz toward chemically rich outflows in the regions of low-mass star formation NGC 1333I4A, NGC 1333I2A, HH25, and L1157. One more maser was found at 36 GHz toward a similar outflow, NGC 2023. Flux densities of the newly detected masers are no more than 18 Jy, being much lower than those of strong masers in regions of high-mass star formation. The brightness temperatures of the strongest peaks in NGC 1333I4A, HH25, and L1157 at 44 GHz are higher than 2000 K, whereas that of the peak in NGC 1333I2A is only 176 K. However, rotational diagram analysis showed that the latter source is also a maser. The main properties of the newly detected masers are similar to those of Class I methanol masers in regions of massive star formation. The former masers are likely to be an extension of the latter maser population toward low luminosities of both the masers and the corresponding YSOs.
We have used deep near-infrared observations with adaptive optics to discover a distributed population of low-mass protostars within the filamentary Infrared Dark Cloud G34.43+00.24. We use maps of dust emission at multiple wavelengths to determine t he column density structure of the cloud. In combination with an empirically-verified model of the magnitude distribution of background stars, this column density map allows us to reliably determine overdensities of red sources that are due to embedded protostars in the cloud. We also identify protostars through their extended emission in K-band which comes from excited H2 in protostellar outflows or reflection nebulosity. We find a population of distributed low-mass protostars, suggesting that low-mass protostars may form earlier than, or contemporaneously with, high-mass protostars in such a filament. The low-mass protostellar population may also produce the narrow linewidth SiO emission observed in some clouds without high-mass protostars. Finally, we use a molecular line map of the cloud to determine the virial parameter per unit length along the filament and find that the highest mass protostars form in the most bound portion of the filament, as suggested by theoretical models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا