ﻻ يوجد ملخص باللغة العربية
We have used deep near-infrared observations with adaptive optics to discover a distributed population of low-mass protostars within the filamentary Infrared Dark Cloud G34.43+00.24. We use maps of dust emission at multiple wavelengths to determine the column density structure of the cloud. In combination with an empirically-verified model of the magnitude distribution of background stars, this column density map allows us to reliably determine overdensities of red sources that are due to embedded protostars in the cloud. We also identify protostars through their extended emission in K-band which comes from excited H2 in protostellar outflows or reflection nebulosity. We find a population of distributed low-mass protostars, suggesting that low-mass protostars may form earlier than, or contemporaneously with, high-mass protostars in such a filament. The low-mass protostellar population may also produce the narrow linewidth SiO emission observed in some clouds without high-mass protostars. Finally, we use a molecular line map of the cloud to determine the virial parameter per unit length along the filament and find that the highest mass protostars form in the most bound portion of the filament, as suggested by theoretical models.
The fragmentation of a molecular cloud that leads to the formation of high-mass stars occurs on a hierarchy of different spatial scales. The large molecular clouds harbour massive molecular clumps with massive cores embedded in them. The fragmentatio
We performed a multiwavelength study toward infrared dark cloud (IRDC) G34.43+0.24. New maps of 13CO $J$=1-0 and C18}O J=1-0 were obtained from the Purple Mountain Observatory (PMO) 13.7 m radio telescope. At 8 um (Spitzer - IRAC), IRDC G34.43+0.24 a
We have observed a cluster forming clump (MM3) associated with the infrared dark cloud G34.43+00.24 in the 1.3 mm continuum and the CH3OH, CS, 13CS, SiO, CH3CH2CN, and HCOOCH3 lines with the Atacama Large Millimeter/submillimeter Array and in K-band
Background: low-mass stars are the dominant product of the star formation process, and they trace star formation over the full range of environments, from isolated globules to clusters in the central molecular zone. In the past two decades, our under
Three bright molecular line sources in G333 have recently been shown to exhibit signatures of infall. We describe a molecular line radiative transfer modelling process which is required to extract the infall signature from Mopra and Nanten2 data. The