ﻻ يوجد ملخص باللغة العربية
Four newest CCD eclipse timings of the white dwarf for polar UZ Fornacis and Six updated CCD mid-eclipse times for SW Sex type nova-like V348 Puppis are obtained. The detailed O-C analyses for both CVs inside period gap are made. Orbital period increases at a rate of $2.63(pm0.58)times10^{-11} s;s^{-1}$ for UZ Fornacis and of $5.8(pm1.9)times10^{-12} s;s^{-1}$ for V348 Puppis, respectively, are discovered in their new O-C diagrams. However, the conservative mass transfer from the secondary to the massive white dwarf cannot explain the observed orbital period increases for both CVs, which are regarded as part of modulations at longer periods. Moreover, the O-C diagram of UZ Fornacis shows a possible cyclical change with a period of $sim23.4(pm5.1)yr$. For explaining the observed cyclical period changes in UZ Fornacis, both mechanisms of magnetic activity cycles in the late-type secondary and the light travel-time effect are regarded as two probable causes. Not only does the modulation period 23.4yr obey the empirical correlation derived by cite{lan99}, but also the estimated fractional period change $Delta P/Psim7.3times10^{-7}$ displays a behavior similar to that of the CVs below the period gap. On the other hand, a calculation for the light travel-time effect implies that the tertiary component in UZ Fornacis may be a brown dwarf with a high confidence level, when the orbital inclination of the third body is larger than $16^{circ}$.
We present time-resolved optical spectroscopy and photometry of the nova-like cataclysmic variable V348 Puppis. The system displays the same spectroscopic behaviour as SW Sex stars, so we classify V348 Pup as a new member of the class. V348 Pup is th
The population of non magnetic cataclysmic variables evolving under the influence of a circumbinary disk is investigated for systems above the upper edge of the period gap at orbital periods greater than 2.75hr. For a fractional mass input rate into
We present high-speed, three-colour photometry of the eclipsing cataclysmic variables CTCV 1300, CTCV 2354 and SDSS 1152. All three systems are below the observed period gap for cataclysmic variables. For each system we determine the system parameter
We report the discovery and analysis of PTF1 J085713+331843, a new eclipsing post common-envelope detached white-dwarf red-dwarf binary with a 2.5h orbital period discovered by the Palomar Transient Factory. ULTRACAM multicolour photometry over multi
The population synthesis of cataclysmic variables below the period is investigated. A grid of detailed binary evolutionary sequences has been calculated and included in the simulations to take account of additional angular momentum losses beyond that