ﻻ يوجد ملخص باللغة العربية
We present high-speed, three-colour photometry of the eclipsing cataclysmic variables CTCV 1300, CTCV 2354 and SDSS 1152. All three systems are below the observed period gap for cataclysmic variables. For each system we determine the system parameters by fitting a parameterised model to the observed eclipse light curve by chi-squared minimisation. We also present an updated analysis of all other eclipsing systems previously analysed by our group. New donor masses are generally between 1 and 2 sigma of those originally published, with the exception of SDSS 1502 and DV UMa. We note that the donor mass of SDSS 1501 has been revised upwards by 0.024Msun. This system was previously identified as having evolved passed the minimum orbital period for cataclysmic variables, but the new mass determination suggests otherwise. Our new analysis confirms that SDSS 1035 and SDSS 1433 have evolved past the period minimum for cataclysmic variables, corroborating our earlier studies. We find that the radii of donor stars are oversized when compared to theoretical models, by approximately 10 percent. We show that this can be explained by invoking either enhanced angular momentum loss, or by taking into account the effects of star spots. We are unable to favour one cause over the other, as we lack enough precise mass determinations for systems with orbital periods between 100 and 130 minutes, where evolutionary tracks begin to diverge significantly. We also find a strong tendency towards high white dwarf masses within our sample, and no evidence for any He-core white dwarfs. The dominance of high mass white dwarfs implies that erosion of the white dwarf during the nova outburst must be negligible, or that not all of the mass accreted is ejected during nova cycles, resulting in the white dwarf growing in mass. (Abridged)
The population synthesis of cataclysmic variables below the period is investigated. A grid of detailed binary evolutionary sequences has been calculated and included in the simulations to take account of additional angular momentum losses beyond that
We report the discovery of a new eclipsing polar, CRTS J035010.7+323230 (hereafter CRTS J0350+3232). We identified this cataclysmic variable (CV) candidate as a possible polar from its multi-year Catalina Real-Time Transient Survey (CRTS) optical lig
Four newest CCD eclipse timings of the white dwarf for polar UZ Fornacis and Six updated CCD mid-eclipse times for SW Sex type nova-like V348 Puppis are obtained. The detailed O-C analyses for both CVs inside period gap are made. Orbital period incre
The mass-loss rate of donor stars in cataclysmic variables (CVs) is of paramount importance in the evolution of short-period CVs. Observed donors are oversized in comparison with those of isolated single stars of the same mass, which is thought to be
Binary evolution theory predicts that accreting white dwarfs with sub-stellar companions dominate the Galactic population of cataclysmic variables (CVs). In order to test these predictions, it is necessary to identify these systems, which may be diff