ترغب بنشر مسار تعليمي؟ اضغط هنا

Galaxy evolution in a complex environment: a multi-wavelength study of HCG 7

86   0   0.0 ( 0 )
 نشر من قبل Iraklis S. Konstantopoulos
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

[Abridged] The environment where galaxies are found heavily influences their evolution. Close groupings, like the cores of galaxy clusters or compact groups, evolve in ways far more dramatic than their isolated counterparts. We have conducted a multiwavelength study of HCG7, consisting of four giant galaxies: 3 spirals and 1 lenticular. We use Hubble Space Telescope (HST) imaging to identify and characterize the young and old star cluster populations. We find young massive clusters (YMC) mostly in the three spirals, while the lenticular features a large, unimodal population of globular clusters (GC) but no detectable clusters with ages less than ~Gyr. The spatial and approximate age distributions of the ~300 YMCs and ~150 GCs thus hint at a regular star formation history in the group over a Hubble time. While at first glance the HST data show the galaxies as undisturbed, our deep ground-based, wide-field imaging that extends the HST coverage reveals faint signatures of stellar material in the intra-group medium. We do not detect the intra-group medium in HI or Chandra X-ray observations, signatures that would be expected to arise from major mergers. We find that the HI gas content of the individual galaxies and the group as a whole are a third of the expected abundance. The appearance of quiescence is challenged by spectroscopy that reveals an intense ionization continuum in one galaxy nucleus, and post-burst characteristics in another. Our spectroscopic survey of dwarf galaxy members yields one dwarf elliptical in an apparent tidal feature. We therefore suggest an evolutionary scenario for HCG7, whereby the galaxies convert most of their available gas into stars without major mergers and result in a dry merger. As the conditions governing compact groups are reminiscent of galaxies at intermediate redshift, we propose that HCGs are appropriate for studying galaxy evolution at z~1-2.

قيم البحث

اقرأ أيضاً

90 - Vivienne Wild 2014
We present a new method to classify the broad band optical-NIR spectral energy distributions (SEDs) of galaxies using three shape parameters (super-colours) based on a Principal Component Analysis of model SEDs. As well as providing a compact represe ntation of the wide variety of SED shapes, the method allows for easy visualisation of information loss and biases caused by the incomplete sampling of the rest-frame SED as a function of redshift. We apply the method to galaxies in the UKIDSS Ultra Deep Survey with 0.9<z<1.2, and confirm our classifications by stacking rest-frame optical spectra for a fraction of objects in each class. As well as cleanly separating a tight red-sequence from star-forming galaxies, three unusual populations are identifiable by their unique colours: very dusty star-forming galaxies with high metallicity and old mean stellar age; post-starburst galaxies which have formed greater than around 10% of their mass in a recent unsustained starburst event; and metal-poor quiescent dwarf galaxies. We find that quiescent galaxies account for 45% of galaxies with log(M*/Msol)>11, declining steadily to 13% at log(M*/Msol)=10. The properties and mass-function of the post-starburst galaxies are consistent with a scenario in which gas-rich mergers contribute to the growth of the low and intermediate mass range of the red sequence.
We study the scaling relations between the baryonic content and total mass of groups of galaxies, as these systems provide a unique way to examine the role of non-gravitational processes in structure formation. Using Planck and ROSAT data, we conduct detailed comparisons of the stacked thermal Sunyaev-Zeldovich (tSZ) and X-ray scaling relations of galaxy groups found in the Galaxy And Mass Assembly (GAMA) survey and the BAHAMAS hydrodynamical simulation. We use weak gravitational lensing data from the Kilo Degree Survey (KiDS) to determine the average halo mass of the studied systems. We analyse the simulation in the same way, using realistic weak lensing, X-ray, and tSZ synthetic observations. Furthermore, to keep selection biases under control, we employ exactly the same galaxy selection and group identification procedures to the observations and simulation. Applying this comparison, we find that the simulations reproduce the richness, size, and stellar mass functions of GAMA groups, as well as the stacked weak lensing and tSZ signals in bins of group stellar mass. However, the simulations predict X-ray luminosities that are higher than observed for this optically-selected group sample. As the same simulations were previously shown to match the luminosities of X-ray-selected groups, this suggests that X-ray-selected systems may form a biased subset. Finally, we demonstrate that our observational processing of the X-ray and tSZ signals is free of significant biases. We find that our optical group selection procedure has, however, some room for improvement.
We present an initial study of the mass and evolutionary state of a massive and distant cluster, RCS2 J232727.6-020437. This cluster, at z=0.6986, is the richest cluster discovered in the RCS2 project. The mass measurements presented in this paper ar e derived from all possible mass proxies: X-ray measurements, weak-lensing shear, strong lensing, Sunyaev Zeldovich effect decrement, the velocity distribution of cluster member galaxies, and galaxy richness. While each of these observables probe the mass of the cluster at a different radius, they all indicate that RCS2 J232727.6-020437 is among the most massive clusters at this redshift, with an estimated mass of M_200 ~3 x10^15 h^-1 Msun. In this paper, we demonstrate that the various observables are all reasonably consistent with each other to within their uncertainties. RCS2 J232727.6-020437 appears to be well relaxed -- with circular and concentric X-ray isophotes, with a cool core, and no indication of significant substructure in extensive galaxy velocity data.
We present an analysis of star formation and nuclear activity of about 28000 galaxies in a volume-limited sample taken from SDSS DR4 low-redshift catalogue (LRC) taken from the New York University Value Added Galaxy Catalogue (NYU-VAGC) of Blanton et al. 2005, with 0.005<z<0.037, ~90% complete to M_r=-18.0. We find that in high-density regions ~70 per cent of galaxies are passively evolving independent of luminosity. In the rarefied field, however, the fraction of passively evolving galaxies is a strong function of luminosity, dropping from 50 per cent for Mr <~ -21 to zero by Mr ~ -18. Moreover the few passively evolving dwarf galaxies in field regions appear as satellites to bright (>~ L*) galaxies. Moreover the fraction of galaxies with the optical signatures of an active galactic nucleus (AGN) decreases steadily from ~50% at Mr~-21 to ~0 per cent by Mr~-18 closely mirroring the luminosity dependence of the passive galaxy fraction in low-density environments (see fig. 1 continuous lines). This result reflects the increasing importance of AGN feedback with galaxy mass for their evolution, such that the star formation histories of massive galaxies are primarily determined by their past merger history.
64 - Eva Schinnerer 2013
The PdBI (Plateau de Bure Interferometer) Arcsecond Whirlpool Survey (PAWS) has mapped the molecular gas in the central ~9kpc of M51 in its 12CO(1-0) line emission at cloud-scale resolution of ~40pc using both IRAM telescopes. We utilize this dataset to quantitatively characterize the relation of molecular gas (or CO emission) to other tracers of the interstellar medium (ISM), star formation and stellar populations of varying ages. Using 2-dimensional maps, a polar cross-correlation technique and pixel-by-pixel diagrams, we find: (a) that (as expected) the distribution of the molecular gas can be linked to different components of the gravitational potential, (b) evidence for a physical link between CO line emission and radio continuum that seems not to be caused by massive stars, but rather depend on the gas density, (c) a close spatial relation between the PAH and molecular gas emission, but no predictive power of PAH emission for the molecular gas mass,(d) that the I-H color map is an excellent predictor of the distribution (and to a lesser degree the brightness) of CO emission, and (e) that the impact of massive (UV-intense) young star-forming regions on the bulk of the molecular gas in central ~9kpc can not be significant due to a complex spatial relation between molecular gas and star-forming regions that ranges from co-spatial to spatially offset to absent. The last point, in particular, highlights the importance of galactic environment -- and thus the underlying gravitational potential -- for the distribution of molecular gas and star formation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا