ﻻ يوجد ملخص باللغة العربية
We present a new method to classify the broad band optical-NIR spectral energy distributions (SEDs) of galaxies using three shape parameters (super-colours) based on a Principal Component Analysis of model SEDs. As well as providing a compact representation of the wide variety of SED shapes, the method allows for easy visualisation of information loss and biases caused by the incomplete sampling of the rest-frame SED as a function of redshift. We apply the method to galaxies in the UKIDSS Ultra Deep Survey with 0.9<z<1.2, and confirm our classifications by stacking rest-frame optical spectra for a fraction of objects in each class. As well as cleanly separating a tight red-sequence from star-forming galaxies, three unusual populations are identifiable by their unique colours: very dusty star-forming galaxies with high metallicity and old mean stellar age; post-starburst galaxies which have formed greater than around 10% of their mass in a recent unsustained starburst event; and metal-poor quiescent dwarf galaxies. We find that quiescent galaxies account for 45% of galaxies with log(M*/Msol)>11, declining steadily to 13% at log(M*/Msol)=10. The properties and mass-function of the post-starburst galaxies are consistent with a scenario in which gas-rich mergers contribute to the growth of the low and intermediate mass range of the red sequence.
[Abridged] The environment where galaxies are found heavily influences their evolution. Close groupings, like the cores of galaxy clusters or compact groups, evolve in ways far more dramatic than their isolated counterparts. We have conducted a multi
We present a UV-to-mid infrared multi-wavelength catalog in the CANDELS/GOODS-S field, combining the newly obtained CANDELS HST/WFC3 F105W, F125W, and F160W data with existing public data. The catalog is based on source detection in the WFC3 F160W ba
The Kepler mission has provided a wealth of data, revealing new insights in time-domain astronomy. However, Keplers single band-pass has limited studies to a single wavelength. In this work we build a data-driven, pixel-level model for the Pixel Resp
Aims. This work investigates the potential of using the wavelength-dependence of galaxy structural parameters (Sersic index, n, and effective radius, Re) to separate galaxies into distinct types. Methods. A sample of nearby galaxies with reliable vis
We have pioneered a new method for the measurement of extragalactic distances. This method uses the time-lag between variations in the short wavelength and long wavelength light from an active galactic nucleus (AGN), based on a quantitative physical