ترغب بنشر مسار تعليمي؟ اضغط هنا

Modeling Mid-Infrared Variability of Circumstellar Disks with Non-Axisymmetric Structure

140   0   0.0 ( 0 )
 نشر من قبل Kevin Flaherty
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent mid-infrared observations of young stellar objects have found significant variations possibly indicative of changes in the structure of the circumstellar disk. Previous models of this variability have been restricted to axisymmetric perturbations in the disk. We consider simple models of a non-axisymmetric variation in the inner disk, such as a warp or a spiral wave. We find that the precession of these non-axisymmetric structures produce negligible flux variations but a change in the height of these structures can lead to significant changes in the mid-infrared flux. Applying these models to observations of the young stellar object LRLL 31 suggests that the observed variability could be explained by a warped inner disk with variable scale height. This suggests that some of the variability observed in young stellar objects could be explained by non-axisymmetric disturbances in the inner disk and this variability would be easily observable in future studies.

قيم البحث

اقرأ أيضاً

The non-axisymmetric structure of accretion disks around the neutron star in Be/X-ray binaries is studied by analyzing the results from three dimensional (3D) Smoothed Particle Hydrodynamics (SPH) simulations. It is found that ram pressure due to the phase-dependent mass transfer from the Be-star disk excites a one-armed, trailing spiral structure in the accretion disk around the neutron star. The spiral wave has a transient nature; it is excited around the periastron, when the material is transferred from the Be disk, and is gradually damped afterwards. It is also found that the orbital phase-dependence of the mass-accretion rate is mainly caused by the inward propagation of the spiral wave excited in the accretion disk.
The study of warm molecular gas in the inner regions of protoplanetary disks is of key importance for the study of planet formation and especially for the transport of H2O and organic molecules to the surfaces of rocky planets/satellites. Recent Spit zer observations have shown that the mid-infrared spectra of protoplanetary disks are covered in emission lines due to water and other molecules. Here, we present a non-LTE 2D radiative transfer model of water lines in the 10-36 mum range that can be used to constrain the abundance structure of water vapor, given an observed spectrum, and show that an assumption of local thermodynamic equilibrium (LTE) does not accurately estimate the physical conditions of the water vapor emission zones. By applying the model to published Spitzer spectra we find that: 1) most water lines are subthermally excited, 2) the gas-to-dust ratio must be one to two orders of magnitude higher than the canonical interstellar medium ratio of 100-200, and 3) the gas temperature must be higher than the dust temperature, and 4) the water vapor abundance in the disk surface must be truncated beyond ~ 1 AU. A low efficiency of water formation below ~ 300 K may naturally result in a lower water abundance beyond a certain radius. However, we find that chemistry, may not be sufficient to produce an abundance drop of many orders of magnitude and speculate that the depletion may also be caused by vertical turbulent diffusion of water vapor from the superheated surface to regions below the snow line, where the water can freeze out and be transported to the midplane as part of the general dust settling. Such a vertical cold finger effect is likely to be efficient due to the lack of a replenishment mechanism of large, water-ice coated dust grains to the disk surface.
323 - K. E. Gabanyi , A. Moor , S. Frey 2018
The IceCube instrument detected a high-energy cosmic neutrino event on 2017 September 22 (IceCube_170922A, IceCube Collaboration 2018), which the electromagnetic follow-up campaigns associated with the flaring $gamma$-ray blazar TXS 0506$+$056 (e.g., Padovani et al., 2018). We investigated the mid-infrared variability of the source by using the available single exposure data of the WISE satellite at $3.4$ and $4.6mu$m. TXS 0506$+$056 experienced a $sim 30$% brightening in both of these bands a few days prior to the neutrino event. Additional intraday infrared variability can be detected in 2010. Similar behaviour seen previously in $gamma$-ray bright radio-loud AGN has been explained by their jet emission (e.g., Jiang et al. 2012).
69 - C. Caravita 2021
We present the theoretical framework to efficiently solve the Jeans equations for multi-component axisymmetric stellar systems, focusing on the scaling of all quantities entering them. The models may include an arbitrary number of stellar distributio ns, a dark matter halo, and a central supermassive black hole; each stellar distribution is implicitly described by a two- or three-integral distribution function, and the stellar components can have different structural (density profile, flattening, mass, scale-length), dynamical (rotation, velocity dispersion anisotropy), and population (age, metallicity, initial mass function, mass-to-light ratio) properties. In order to determine the ordered rotational velocity and the azimuthal velocity dispersion fields of each component, we introduce a decomposition that can be used when the commonly adopted Satoh decomposition cannot be applied. The scheme developed is particularly suitable for a numerical implementation; we describe its realisation within our code JASMINE2, optimised to maximally exploit the scalings allowed by the Poisson and the Jeans equations, also in the post-processing procedures. As applications, we illustrate the building of three multi-component galaxy models with two distinct stellar populations, a central black hole, and a dark matter halo; we also study the solution of the Jeans equations for an exponential thick disc, and for its multi-component representation as the superposition of three Miyamoto-Nagai discs. A useful general formula for the numerical evaluation of the gravitational potential of factorised thick discs is finally given.
Context. DG Tau is a low-mass pre-main sequence star, whose strongly accreting protoplanetary disk exhibits a so-far enigmatic behavior: its mid-infrared thermal emission is strongly time-variable, even turning the 10 $mu$m silicate feature from emis sion to absorption temporarily. Aims. We look for the reason for the spectral variability at high spatial resolution and at multiple epochs. Methods. We study the temporal variability of the mid-infrared interferometric signal, observed with the VLTI/MIDI instrument at six epochs between 2011 and 2014. We fit a geometric disk model to the observed interferometric signal to obtain spatial information about the disk. We also model the mid-infrared spectra by template fitting to characterize the profile and time dependence of the silicate emission. We use physically motivated radiative transfer modeling to interpret the mid-infrared interferometric spectra. Results. The inner disk (r<1-3 au) spectra exhibit a 10 $mu$m absorption feature related to amorphous silicate grains. The outer disk (r>1-3 au) spectra show a crystalline silicate feature in emission, similar to the spectra of comet Hale-Bopp. The striking difference between the inner and outer disk spectral feature is highly unusual among T Tauri stars. The mid-infrared variability is dominated by the outer disk. The strength of the silicate feature changed by more than a factor of two. Between 2011 and 2014 the half-light radius of the mid-infrared-emitting region decreased from 1.15 to 0.7 au. Conclusions. For the origin of the absorption we discuss four possible explanations: a cold obscuring envelope, an accretion heated inner disk, a temperature inversion on the disk surface and a misaligned inner geometry. The silicate emission in the outer disk can be explained by dusty material high above the disk plane, whose mass can change with time, possibly due to turbulence in the disk.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا