ترغب بنشر مسار تعليمي؟ اضغط هنا

Status of ArDM-1t: First observations from operation with a full ton-scale liquid argon target

198   0   0.0 ( 0 )
 نشر من قبل Andre Rubbia
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

ArDM-1t is the first operating ton-scale liquid argon detector for direct search of Dark Matter particles. Developed at CERN as Recognized Experiment RE18, the experiment has been approved in 2010 to be installed in the Spanish underground site LSC (Laboratorio Subterraneo de Canfranc). Under the label of LSC EXP-08-2010 the ArDM detector underwent an intensive period of technical completion and safety approval until the recent filling of the target vessel with almost 2 ton of liquid argon. This report describes the experimental achievements during commissioning of ArDM and the transition into a stage of first physics data taking in single phase operational mode. We present preliminary observations from this run. A first indication for the background discrimination power of LAr detectors at the ton-scale is shown. We present an outlook for completing the detector with the electric drift field and upgrade of the scintillation light readout system with novel detector modules based on SiPMs in order to improve the light yield.



قيم البحث

اقرأ أيضاً

The Argon Dark Matter (ArDM) experiment consists of a liquid argon (LAr) time projection chamber (TPC) sensitive to nuclear recoils resulting from scattering of hypothetical Weakly Interacting Massive Particles (WIMPs) on argon targets. With an activ e target of 850 kg, ArDM represents an important milestone in the quest for Dark Matter with LAr. We present the experimental apparatus currently installed underground at the Laboratorio Subterraneo de Canfranc (LSC), Spain. We show first data recorded during a single-phase commissioning run in 2015 (ArDM Run I), which overall confirm the good and stable performance of the ton-scale LAr detector.
The Argon Dark Matter (ArDM-1t) experiment is a ton-scale liquid argon (LAr) double-phase time projection chamber designed for direct Dark Matter searches. Such a device allows to explore the low energy frontier in LAr. After successful operation on surface at CERN, the detector has been deployed underground and is presently commissioned at the Canfranc Underground Laboratory (LSC). In this paper, we describe the status of the installation and present first results on data collected in gas phase.
The ArDM experiment completed a single-phase commissioning run in 2015 with an active liquid argon target of nearly one tonne in mass. The analysis of the data and comparison to simulations allowed for a test of the crucial detector properties and co nfirmed the low background performance of the setup. The statistical rejection power for electron recoil events using the pulse shape discrimination method was estimated using data from a Cf-252 neutron calibration source. Electron and nuclear recoil band profiles were found to be well described by Gaussian distributions. Employing such a model we derive values for the electron recoil statistical rejection power of more than 10$^8$ in the tonne-scale liquid argon target for events with more than 50 detected photons at a 50% acceptance for nuclear recoils. The Rn-222 emanation rate of the ArDM cryostat at room temperature was found to be 65.6$pm$0.4 $mu$Hz/l, and the Ar-39 specific activity from the employed atmospheric argon to be 0.95$pm$0.05 Bq/kg. The cosmic muon flux at the Canfranc underground site was determined to be between 2 and 3.5$times 10^{-3}m^{2}s^{-1}$ . These results pave the way for the next physics run of ArDM in the double-phase operational mode.
ArDM-1t is the prototype for a next generation WIMP detector measuring both the scintillation light and the ionization charge from nuclear recoils in a 1-ton liquid argon target. The goal is to reach a minimum recoil energy of 30,keVr to detect recoi ling nuclei. In this paper we describe the experimental concept and present results on the light detection system, tested for the first time in ArDM on the surface at CERN. With a preliminary and incomplete set of PMTs, the light yield at zero electric field is found to be between 0.3-0.5 phe/keVee depending on the position within the detector volume, confirming our expectations based on smaller detector setups.
Liquified noble gases are widely used as a target in direct Dark Matter searches. Signals from scintillation in the liquid, following energy deposition from the recoil nuclei scattered by Dark Matter particles (e.g. WIMPs), should be recorded down to very low energies by photosensors suitably designed to operate at cryogenic temperatures. Liquid Argon based detectors for Dark Matter searches currently implement photo multiplier tubes for signal read-out. In the last few years PMTs with photocathodes operating down to liquid Argon temperatures (87 K) have been specially developed with increasing Quantum Efficiency characteristics. The most recent of these, Hamamatsu Photonics Mod. R11065 with peak QE up to about 35%, has been extensively tested within the R&D program of the WArP Collaboration. During these testes the Hamamatsu PMTs showed superb performance and allowed obtaining a light yield around 7 phel/keVee in a Liquid Argon detector with a photocathodic coverage in the 12% range, sufficient for detection of events down to few keVee of energy deposition. This shows that this new type of PMT is suited for experimental applications, in particular for new direct Dark Matter searches with LAr-based experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا