ﻻ يوجد ملخص باللغة العربية
Coherent conversion between a Raman pump field and its Stokes field is observed in a Raman process with a strong atomic spin wave initially prepared by another Raman process operated in the stimulated emission regime. The oscillatory behavior resembles the Rabi oscillation in atomic population in a two-level atomic system driven by a strong light field. The Rabi-like oscillation frequency is found to be related to the strength of the pre-built atomic spin wave. High conversion efficiency of 40% from the Raman pump field to the Stokes field is recorded and it is independent of the input Raman pump field. This process can act as a photon frequency multiplexer and may find wide applications in quantum information science.
The Rabi oscillations of a two-level atom illuminated by a laser on resonance with the atomic transition may be suppressed by the atomic motion through averaging or filtering mechanisms. The optical analogs of these velocity effects are described. Th
In recent experiments[e.g., Nature Physics 2, 332 (2006)], the enhanced light deflection in an atomic ensemble due to inhomogeneous fields is demonstrated by the electromagnetically induced transparency (EIT) based mechanism. In this paper, we explor
VdW materials are a family of materials ranging from semimetal, semiconductor to insulator, and their common characteristic is the layered structure. These features make them widely applied in the fabrication of nano-photonic and electronic devices,
We theoretically study a cavity filled with atoms, which provides the optical-mechanical interaction between the modified cavity photonic field and a movable mirror at one end. We show that the cavity field ``dresses these atoms, producing two types
We propose and theoretically investigate an unambiguous Bell measurement of atomic qubits assisted by multiphoton states. The atoms interact resonantly with the electromagnetic field inside two spatially separated optical cavities in a Ramsey-type in