ﻻ يوجد ملخص باللغة العربية
VdW materials are a family of materials ranging from semimetal, semiconductor to insulator, and their common characteristic is the layered structure. These features make them widely applied in the fabrication of nano-photonic and electronic devices, particularly, vdW heterojunctions. HBN is the only layered material to date that is demonstrated to contain optically-detected electronic spins, which can benefit the construction of solid qubit and quantum sensor, etc., especially embedded in the nano-layered-devices. To realize this, Rabi oscillation is a crucial step. Here, we demonstrate the Rabi oscillation of V$_text{B}^-$ spins in hBN. Interestingly, we find the behaviors of the spins are completely different under the conditions of weak and relatively higher magnetic field. The former behaves like a single wide peak, but the latter behaves like multiple narrower peaks (e.g., a clear beat in Ramsey fringes). We conjecture a strong coupling of the spin with the surrounding nuclear spins, and the magnetic field can control the nuclear spin bath.
Optically active spin defects in wide-bandgap materials have many potential applications in quantum information and quantum sensing. Spin defects in two-dimensional layered van der Waals materials are just emerging to be investigated. Here we demonst
Two-dimensional hexagonal boron nitride offers intriguing opportunities for advanced studies of light-matter interaction at the nanoscale, specifically for realizations in quantum nanophotonics. Here, we demonstrate the engineering of optically-addre
Optically addressable spin defects in wide-bandage semiconductors as promising systems for quantum information and sensing applications have attracted more and more attention recently. Spin defects in two-dimensional materials are supposed to have un
Optically addressable spins associated with defects in wide-bandgap semiconductors are versatile platforms for quantum information processing and nanoscale sensing, where spin-dependent inter-system crossing (ISC) transitions facilitate optical spin
Two-dimensional hexagonal boron nitride (hBN) has attracted large attentions as platforms for realizations for integrated nanophotonics and collective effort has been focused on the spin defect centers. Here, the temperature dependence of the resonan