ترغب بنشر مسار تعليمي؟ اضغط هنا

Observation of Single Dirac Cone Topological Surface State in Compounds TlBiTe2 and TlBiSe2 from a New Topological Insulator Family

292   0   0.0 ( 0 )
 نشر من قبل Yulin Chen
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Angle resolved photoemission spectroscopy (ARPES) studies were performed on two compounds (TlBiTe$_2$ and TlBiSe$_2$) from a recently proposed three dimensional topological insulator family in Thallium-based III-V-VI$_2$ ternary chalcogenides. For both materials, we show that the electronic band structures are in broad agreement with the $ab$ $initio$ calculations; by surveying over the entire surface Brillouin zone (BZ), we demonstrate that there is a single Dirac cone reside at the center of BZ, indicating its topological non-triviality. For TlBiSe$_2$, the observed Dirac point resides at the top of the bulk valance band, making it a large gap ($geq$200$meV$) topological insulator; while for TlBiTe$_2$, we found there exist a negative indirect gap between the bulk conduction band at $M$ point and the bulk valance band near $Gamma$, making it a semi-metal at proper doping. Interestingly, the unique band structures of TlBiTe$_2$ we observed further suggest TlBiTe$_2$ may be a candidate for topological superconductors.



قيم البحث

اقرأ أيضاً

The unoccupied states in topological insulators Bi_2Se_3, PbSb_2Te_4, and Pb_2Bi_2Te_2S_3 are studied by the density functional theory methods. It is shown that a surface state with linear dispersion emerges in the inverted conduction band energy gap at the center of the surface Brillouin zone on the (0001) surface of these insulators. The alternative expression of Z_2 invariant allowed us to show that a necessary condition for the existence of the second Gamma Dirac cone is the presence of local gaps at the time reversal invariant momentum points of the bulk spectrum and change of parity in one of these points.
We investigate the surface state of Bi$_2$Te$_3$ using angle resolved photoemission spectroscopy (ARPES) and transport measurements. By scanning over the entire Brillouin zone (BZ), we demonstrate that the surface state consists of a single non-degen erate Dirac cone centered at the $Gamma$ point. Furthermore, with appropriate hole (Sn) doping to counteract intrinsic n-type doping from vacancy and anti-site defects, the Fermi level can be tuned to intersect only the surface states, indicating a full energy gap for the bulk states, consistent with a carrier sign change near this doping in transport properties. Our experimental results establish for the first time that Bi$_2$Te$_3$ is a three dimensional topological insulator with a single Dirac cone on the surface, as predicted by a recent theory.
We performed broadband optical transmission measurements of Bi2Se3 and In-doped Bi(1-x)In(x)2Se3 thin films, where in the latter the spin-orbit coupling (SOC) strength can be tuned by introducing In. Drude and interband transitions exhibit In-depende nt changes that are consistent with evolution from metallic (x=0) to insulating (x=1) nature of the end compounds. Most notably, an optical absorption peak located at hw=1eV in Bi2Se3 is completely quenched at x=0.06, the critical concentration where the phase transition from TI into non-TI takes place. For this x, the surface state (SS) is vanished from the band structure as well. The correlation between the 1eV optical peak and the SS in the x-dependences suggests that the peak is associated with the SS. We further show that when Bi2Se3 is electrically gated, the 1eV-peak becomes stronger(weaker) when electron is depleted from (accumulated into) the SS. These observations combined together demonstrate that under the hw=1eV illumination electron is excited from a bulk band into the topological surface band of Bi2Se3. The optical population of surface band is of significant importance not only for fundamental study but also for TI-based optoelectronic device application.
Plasmons are the quantized collective oscillations of electrons in metals and doped semiconductors. The plasmons of ordinary, massive electrons are since a long time basic ingredients of research in plasmonics and in optical metamaterials. Plasmons o f massless Dirac electrons were instead recently observed in a purely two-dimensional electron system (2DEG)like graphene, and their properties are promising for new tunable plasmonic metamaterials in the terahertz and the mid-infrared frequency range. Dirac quasi-particles are known to exist also in the two-dimensional electron gas which forms at the surface of topological insulators due to a strong spin-orbit interaction. Therefore,one may look for their collective excitations by using infrared spectroscopy. Here we first report evidence of plasmonic excitations in a topological insulator (Bi2Se3), that was engineered in thin micro-ribbon arrays of different width W and period 2W to select suitable values of the plasmon wavevector k. Their lineshape was found to be extremely robust vs. temperature between 6 and 300 K, as one may expect for the excitations of topological carriers. Moreover, by changing W and measuring in the terahertz range the plasmonic frequency vP vs. k we could show, without using any fitting parameter, that the dispersion curve is in quantitative agreement with that predicted for Dirac plasmons.
Magnetic topological insulators (TIs) with nontrivial topological electronic structure and broken time-reversal symmetry exhibit various exotic topological quantum phenomena. The realization of such exotic phenomena at high temperature is one of cent ral topics in this area. We reveal that MnBi6Te10 is a magnetic TI with an antiferromagnetic ground state below 10.8 K whose nontrivial topology is manifested by Dirac-like surface states. The ferromagnetic axion insulator state with Z4 = 2 emerges once spins polarized at field as low as 0.1 T, accompanied with saturated anomalous Hall resistivity up to 10 K. Such a ferromagnetic state is preserved even external field down to zero at 2 K. Theoretical calculations indicate that the few-layer ferromagnetic MnBi6Te10 is also topologically nontrivial with a non-zero Chern number. Angle-resolved photoemission spectroscopy experiments further reveal three types of Dirac surface states arising from different terminations on the cleavage surfaces, one of which has insulating behavior with an energy gap of ~ 28 meV at the Dirac point. These outstanding features suggest that MnBi6Te10 is a promising system to realize various topological quantum effects at zero field and high temperature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا