ﻻ يوجد ملخص باللغة العربية
Weighted logic programming, a generalization of bottom-up logic programming, is a well-suited framework for specifying dynamic programming algorithms. In this setting, proofs correspond to the algorithms output space, such as a path through a graph or a grammatical derivation, and are given a real-valued score (often interpreted as a probability) that depends on the real weights of the base axioms used in the proof. The desired output is a function over all possible proofs, such as a sum of scores or an optimal score. We describe the PRODUCT transformation, which can merge two weighted logic programs into a new one. The resulting program optimizes a product of proof scores from the original programs, constituting a scoring function known in machine learning as a ``product of experts. Through the addition of intuitive constraining side conditions, we show that several important dynamic programming algorithms can be derived by applying PRODUCT to weighted logic programs corresponding to simpler weighted logic programs. In addition, we show how the computation of Kullback-Leibler divergence, an information-theoretic measure, can be interpreted using PRODUCT.
Description logic programs (dl-programs) under the answer set semantics formulated by Eiter {em et al.} have been considered as a prominent formalism for integrating rules and ontology knowledge bases. A question of interest has been whether dl-progr
In this note we consider the problem of introducing variables in temporal logic programs under the formalism of Temporal Equilibrium Logic (TEL), an extension of Answer Set Programming (ASP) for dealing with linear-time modal operators. To this aim,
Description Logic Programs (dl-programs) proposed by Eiter et al. constitute an elegant yet powerful formalism for the integration of answer set programming with description logics, for the Semantic Web. In this paper, we generalize the notions of co
Extracting spatial-temporal knowledge from data is useful in many applications. It is important that the obtained knowledge is human-interpretable and amenable to formal analysis. In this paper, we propose a method that trains neural networks to lear
We present a logical calculus for reasoning about information flow in quantum programs. In particular we introduce a dynamic logic that is capable of dealing with quantum measurements, unitary evolutions and entanglements in compound quantum systems.