ترغب بنشر مسار تعليمي؟ اضغط هنا

Products of Weighted Logic Programs

95   0   0.0 ( 0 )
 نشر من قبل Shay Cohen
 تاريخ النشر 2010
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Weighted logic programming, a generalization of bottom-up logic programming, is a well-suited framework for specifying dynamic programming algorithms. In this setting, proofs correspond to the algorithms output space, such as a path through a graph or a grammatical derivation, and are given a real-valued score (often interpreted as a probability) that depends on the real weights of the base axioms used in the proof. The desired output is a function over all possible proofs, such as a sum of scores or an optimal score. We describe the PRODUCT transformation, which can merge two weighted logic programs into a new one. The resulting program optimizes a product of proof scores from the original programs, constituting a scoring function known in machine learning as a ``product of experts. Through the addition of intuitive constraining side conditions, we show that several important dynamic programming algorithms can be derived by applying PRODUCT to weighted logic programs corresponding to simpler weighted logic programs. In addition, we show how the computation of Kullback-Leibler divergence, an information-theoretic measure, can be interpreted using PRODUCT.



قيم البحث

اقرأ أيضاً

Description logic programs (dl-programs) under the answer set semantics formulated by Eiter {em et al.} have been considered as a prominent formalism for integrating rules and ontology knowledge bases. A question of interest has been whether dl-progr ams can be captured in a general formalism of nonmonotonic logic. In this paper, we study the possibility of embedding dl-programs into default logic. We show that dl-programs under the strong and weak answer set semantics can be embedded in default logic by combining two translations, one of which eliminates the constraint operator from nonmonotonic dl-atoms and the other translates a dl-program into a default theory. For dl-programs without nonmonotonic dl-atoms but with the negation-as-failure operator, our embedding is polynomial, faithful, and modular. In addition, our default logic encoding can be extended in a simple way to capture recently proposed weakly well-supported answer set semantics, for arbitrary dl-programs. These results reinforce the argument that default logic can serve as a fruitful foundation for query-based approaches to integrating ontology and rules. With its simple syntax and intuitive semantics, plus available computational results, default logic can be considered an attractive approach to integration of ontology and rules.
In this note we consider the problem of introducing variables in temporal logic programs under the formalism of Temporal Equilibrium Logic (TEL), an extension of Answer Set Programming (ASP) for dealing with linear-time modal operators. To this aim, we provide a definition of a first-order version of TEL that shares the syntax of first-order Linear-time Temporal Logic (LTL) but has a different semantics, selecting some LTL models we call temporal stable models. Then, we consider a subclass of theories (called splittable temporal logic programs) that are close to usual logic programs but allowing a restricted use of temporal operators. In this setting, we provide a syntactic definition of safe variables that suffices to show the property of domain independence -- that is, addition of arbitrary elements in the universe does not vary the set of temporal stable models. Finally, we present a method for computing the derivable facts by constructing a non-temporal logic program with variables that is fed to a standard ASP grounder. The information provided by the grounder is then used to generate a subset of ground temporal rules which is equivalent to (and generally smaller than) the full program instantiation.
Description Logic Programs (dl-programs) proposed by Eiter et al. constitute an elegant yet powerful formalism for the integration of answer set programming with description logics, for the Semantic Web. In this paper, we generalize the notions of co mpletion and loop formulas of logic programs to description logic programs and show that the answer sets of a dl-program can be precisely captured by the models of its completion and loop formulas. Furthermore, we propose a new, alternative semantics for dl-programs, called the {em canonical answer set semantics}, which is defined by the models of completion that satisfy what are called canonical loop formulas. A desirable property of canonical answer sets is that they are free of circular justifications. Some properties of canonical answer sets are also explored.
Extracting spatial-temporal knowledge from data is useful in many applications. It is important that the obtained knowledge is human-interpretable and amenable to formal analysis. In this paper, we propose a method that trains neural networks to lear n spatial-temporal properties in the form of weighted graph-based signal temporal logic (wGSTL) formulas. For learning wGSTL formulas, we introduce a flexible wGSTL formula structure in which the users preference can be applied in the inferred wGSTL formulas. In the proposed framework, each neuron of the neural networks corresponds to a subformula in a flexible wGSTL formula structure. We initially train a neural network to learn the wGSTL operators and then train a second neural network to learn the parameters in a flexible wGSTL formula structure. We use a COVID-19 dataset and a rain prediction dataset to evaluate the performance of the proposed framework and algorithms. We compare the performance of the proposed framework with three baseline classification methods including K-nearest neighbors, decision trees, and artificial neural networks. The classification accuracy obtained by the proposed framework is comparable with the baseline classification methods.
We present a logical calculus for reasoning about information flow in quantum programs. In particular we introduce a dynamic logic that is capable of dealing with quantum measurements, unitary evolutions and entanglements in compound quantum systems. We give a syntax and a relational semantics in which we abstract away from phases and probabilities. We present a sound proof system for this logic, and we show how to characterize by logical means various forms of entanglement (e.g. the Bell states) and various linear operators. As an example we sketch an analysis of the teleportation protocol.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا