ترغب بنشر مسار تعليمي؟ اضغط هنا

First background-free limit from a directional dark matter experiment: results from a fully fiducialised DRIFT detector

212   0   0.0 ( 0 )
 نشر من قبل Stephen Sadler
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The addition of O2 to gas mixtures in time projection chambers containing CS2 has recently been shown to produce multiple negative ions that travel at slightly different velocities. This allows a measurement of the absolute position of ionising events in the z (drift) direction. In this work, we apply the z-fiducialisation technique to a directional dark matter search. In particular, we present results from a 46.3 live-day source-free exposure of the DRIFT-IId detector run in this completely new mode. With full-volume fiducialisation, we have achieved the first background-free operation of a directional detector. The resulting exclusion curve for spin-dependent WIMP-proton interactions reaches 1.1 pb at 100 GeV/c2, a factor of 2 better than our previous work. We describe the automated analysis used here, and argue that detector upgrades, implemented after the acquisition of these data, will bring an additional factor of >3 improvement in the near future.

قيم البحث

اقرأ أيضاً

We present the first limits on inelastic electron-scattering dark matter and dark photon absorption using a prototype SuperCDMS detector having a charge resolution of 0.1 electron-hole pairs (CDMS HVeV, a 0.93 gram CDMS HV device). These electron-rec oil limits significantly improve experimental constraints on dark matter particles with masses as low as 1 MeV/$mathrm{c^2}$. We demonstrate a sensitivity to dark photons competitive with other leading approaches but using substantially less exposure (0.49 gram days). These results demonstrate the scientific potential of phonon-mediated semiconductor detectors that are sensitive to single electronic excitations.
We report on the first dark-matter (DM) search results from PandaX-I, a low threshold dual-phase xenon experiment operating at the China Jinping Underground Laboratory. In the 37-kg liquid xenon target with 17.4 live-days of exposure, no DM particle candidate event was found. This result sets a stringent limit for low-mass DM particles and disfavors the interpretation of previously-reported positive experimental results. The minimum upper limit, $3.7times10^{-44}$,cm$^2$, for the spin-independent isoscalar DM-particle-nucleon scattering cross section is obtained at a DM-particle mass of 49,GeV/c$^2$ at 90% confidence level.
349 - S. Burgos , J. Forbes , C. Ghag 2007
Data from the DRIFT-IIa directional dark matter experiment are presented, collected during a near continuous 6 month running period. A detailed calibration analysis comparing data from gamma-ray, x-ray and neutron sources to a GEANT4 Monte Carlo simu lations reveals an efficiency for detection of neutron induced recoils of 94+/-2(stat.)+/-5(sys.)%. Software-based cuts, designed to remove non-nuclear recoil events, are shown to reject 60Co gamma-rays with a rejection factor of better than 8x10-6 for all energies above threshold. An unexpected event population has been discovered and is shown here to be due to the alpha-decay of 222Rn daughter nuclei that have attached to the central cathode. A limit on the flux of neutrons in the Boulby Underground Laboratory is derived from analysis of unshielded and shielded data.
The Dark Matter Time Projection Chamber (DMTPC) is a low pressure (75 Torr CF4) 10 liter detector capable of measuring the vector direction of nuclear recoils with the goal of directional dark matter detection. In this paper we present the first dark matter limit from DMTPC. In an analysis window of 80-200 keV recoil energy, based on a 35.7 g-day exposure, we set a 90% C.L. upper limit on the spin-dependent WIMP-proton cross section of 2.0 x 10^{-33} cm^{2} for 115 GeV/c^2 dark matter particle mass.
The PICASSO dark matter search experiment operated an array of 32 superheated droplet detectors containing 3.0 kg of C$_{4}$F$_{10}$ and collected an exposure of 231.4 kgd at SNOLAB between March 2012 and January 2014. We report on the final results of this experiment which includes for the first time the complete data set and improved analysis techniques including mbox{acoustic} localization to allow fiducialization and removal of higher activity regions within the detectors. No signal consistent with dark matter was observed. We set limits for spin-dependent interactions on protons of $sigma_p^{SD}$~=~1.32~$times$~10$^{-2}$~pb (90%~C.L.) at a WIMP mass of 20 GeV/c$^{2}$. In the spin-independent sector we exclude cross sections larger than $sigma_p^{SI}$~=~4.86~$times$~10$^{-5 }$~pb~(90% C.L.) in the region around 7 GeV/c$^{2}$. The pioneering efforts of the PICASSO experiment have paved the way forward for a next generation detector incorporating much of this technology and experience into larger mass bubble chambers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا