ترغب بنشر مسار تعليمي؟ اضغط هنا

Understanding the onset of negative electronic compressibility in one- and two-band 2D electron gases: Application to LaAlO$_3$/SrTiO$_3$

75   0   0.0 ( 0 )
 نشر من قبل Jason Haraldsen Ph.D
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the effects of two electronic bands at the negative electronic compressibility (NEC) in a two-dimensional electron gas (2DEG). We use a simple homogeneous model with Coulombic interactions and first-order multi-band coupling to examine the role of effective mass and relative permittivity in relation to the critical carrier density, where compressibility turns negative. We demonstrate that the population of a second band, along with the presence of inter-band coupling, can dramatically change the cross-over carrier density. Given the difficulty in determining and confirming multi-band electronic systems, this model provides a potential method for identifying multi-band electronic systems using precise bulk electronic properties measurements. To help illustrate this method, we apply our results to the observed NEC in the 2D electron gas at the interface of LaAlO$_3$/SrTiO$_3$ (LAO/STO) and determine that, for the known parameters of LAO/STO, the system is likely a realization of a two-band 2D electron gas. Furthermore, we provide general limits on the inter-band coupling with respect to the electronic band population.

قيم البحث

اقرأ أيضاً

70 - Lu Li , C. Richter , S. Paetel 2010
Novel electronic systems forming at oxide interfaces comprise a class of new materials with a wide array of potential applications. A high mobility electron system forms at the LaAlO$_3$/SrTiO$_3$ interface and, strikingly, both superconducts and dis plays indications of hysteretic magnetoresistance. An essential step for device applications is establishing the ability to vary the electronic conductivity of the electron system by means of a gate. We have fabricated metallic top gates above a conductive interface to vary the electron density at the interface. By monitoring capacitance and electric field penetration, we are able to tune the charge carrier density and establish that we can completely deplete the metallic interface with small voltages. Moreover, at low carrier densities, the capacitance is significantly enhanced beyond the geometric capacitance for the structure. In the same low density region, the metallic interface overscreens an external electric field. We attribute these observations to a negative compressibility of the electronic system at the interface. Similar phenomena have been observed previously in semiconducting two-dimensional electronic systems. The observed compressibility result is consistent with the interface containing a system of mobile electrons in two dimensions.
The 2-dimensional electron system at the interface between LaAlO$_{3}$ and SrTiO$_{3}$ has several unique properties that can be tuned by an externally applied gate voltage. In this work, we show that this gate-tunability extends to the effective ban d structure of the system. We combine a magnetotransport study on top-gated Hall bars with self-consistent Schrodinger-Poisson calculations and observe a Lifshitz transition at a density of $2.9times10^{13}$ cm$^{-2}$. Above the transition, the carrier density of one of the conducting bands decreases with increasing gate voltage. This surprising decrease is accurately reproduced in the calculations if electronic correlations are included. These results provide a clear, intuitive picture of the physics governing the electronic structure at complex oxide interfaces.
Localization of electrons in the two-dimensional electron gas at the LaAlO$_3$/SrTiO$_3$ interface is investigated by varying the channel thickness in order to establish the nature of the conducting channel. Layers of SrTiO$_3$ were grown on NdGaO$_3 $ (110) substrates and capped with LaAlO$_3$. When the SrTiO$_3$ thickness is $leq 6$ unit cells, most electrons at the interface are localized, but when the number of SrTiO$_3$ layers is 8-16, the free carrier density approaches $3.3 times 10^{14}$ cm$^{-2}$, the value corresponding to charge transfer of 0.5 electron per unit cell at the interface. The number of delocalized electrons decreases again when the SrTiO$_3$ thickness is $geq 20$ unit cells. The $sim{4}$ nm conducting channel is therefore located significantly below the interface. The results are explained in terms of Anderson localization and the position of the mobility edge with respect to the Fermi level.
We investigated the electronic structure of the SrTiO$_3$/LaAlO$_3$ superlattice (SL) by resonant soft x-ray scattering. The (003) peak, which is forbidden for our ideal SL structure, was observed at all photon energies, indicating reconstruction at the interface. From the peak position analyses taking into account the effects of refraction, we obtained evidence for electronic reconstruction of Ti 3d and O $2p$ states at the interface. From reflectivity analyses, we concluded that the AlO$_2$/LaO/TiO$_2$/SrO and the TiO$_2$/SrO/AlO$_2$/LaO interfaces are quite different, leading to highly asymmetric properties.
Low dimensionality, broken symmetry and easily-modulated carrier concentrations provoke novel electronic phase emergence at oxide interfaces. However, the spatial extent of such reconstructions - i.e. the interfacial depth - remains unclear. Examinin g LaAlO$_3$/SrTiO$_3$ heterostructures at previously unexplored carrier densities $n_{2D}geq6.9times10^{14}$ cm$^{-2}$, we observe a Shubnikov-de Haas effect for small in-plane fields, characteristic of an anisotropic 3D Fermi surface with preferential $d_{xz,yz}$ orbital occupancy extending over at least 100~nm perpendicular to the interface. Quantum oscillations from the 3D Fermi surface of bulk doped SrTiO$_3$ emerge simultaneously at higher $n_{2D}$. We distinguish three areas in doped perovskite heterostructures: narrow ($<20$ nm) 2D interfaces housing superconductivity and/or other emergent phases, electronically isotropic regions far ($>120$ nm) from the interface and new intermediate zones where interfacial proximity renormalises the electronic structure relative to the bulk.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا