ﻻ يوجد ملخص باللغة العربية
Anisotropic Alfv{e}nic fluctuations with $k_{parallel}/k_{perp}ll 1$ remain at frequencies much smaller than the ion cyclotron frequency in the presence of a strong background magnetic field. Based on the simplest truncation of the electromagnetic gyrofluid equations in a homogeneous plasma, a model for the energy cascade produced by Alfv{e}nic turbulence is constructed, which smoothly connect the large magnetohydrodynamics (MHD) scales and the small kinetic scales. Scaling relations are obtained for the electromagnetic fluctuations, as a function of $k_{perp}$ and $k_{parallel}$. Moreover, a particular attention is paid to the spectral structure of the parallel electric field which is produced by Alfv{e}nic turbulence. The reason is the potential implication of this parallel electric field in turbulent acceleration and transport of particles. For electromagnetic turbulence, this issue was raised some time ago in [A. Hasegawa, K. Mima, J. Geophys. Res. {bf 83} 1117 (1978)].
{This work aims to investigate the spectral structure of the parallel electric field generated by strong anisotropic and balanced Alfvenic turbulence in relation with the problem of electron acceleration from the thermal population in solar flare pla
We present numerical evidence that in strong Alfvenic turbulence, the critical balance principle---equality of the nonlinear decorrelation and linear propagation times---is scale invariant, in the sense that the probability distribution of the ratio
Previous numerical studies have identified phase mixing of low-frequency Alfven waves as a mean of parallel electric field amplification and acceleration of electrons in a collisionless plasma. Theoretical explanations are given of how this produces
We make use of the Parker Solar Probe (PSP) data to explore the nature of solar wind turbulence focusing on the Alfvenic character and power spectra of the fluctuations and their dependence on distance and context (i.e. large scale solar wind propert
A Lie-Poisson bracket is presented for a five-field gyrofluid model, thereby showing the model to be Hamiltonian. The model includes the effects of magnetic field curvature and describes the evolution of the electron and ion gyro-center densities, th