ترغب بنشر مسار تعليمي؟ اضغط هنا

Alfvenic versus non-Alfvenic turbulence in the inner heliosphere as observed by Parker Solar Probe

461   0   0.0 ( 0 )
 نشر من قبل Chen Shi
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We make use of the Parker Solar Probe (PSP) data to explore the nature of solar wind turbulence focusing on the Alfvenic character and power spectra of the fluctuations and their dependence on distance and context (i.e. large scale solar wind properties), aiming to understand the role that different effects such as source properties, solar wind expansion, stream interaction might play in determining the turbulent state. We carry out a statistical survey of the data from the first five orbits of PSP with a focus on how the fluctuation properties at the large, MHD scales, vary with different solar wind streams and distance from the Sun. A more in-depth analysis from several selected periods is also presented. Our results show that as fluctuations are transported outward by the solar wind, the magnetic field spectrum steepens while the shape of the velocity spectrum remains unchanged. The steepening process is controlled by the age of the turbulence, determined by the wind speed together with the radial distance. Statistically, faster solar wind has higher Alfvenicity, with more dominant outward propagating wave component and more balanced magnetic/kinetic energies. The outward wave dominance gradually weakens with radial distance, while the excess of magnetic energy is found to be stronger as we move closer toward the Sun. We show that the turbulence properties can vary significantly stream to stream even if these streams are of similar speed, indicating very different origins of these streams. Especially, the slow wind that originates near the polar coronal holes has much lower Alfvenicity compared with the slow wind that originates from the active regions/pseudostreamers. We show that structures such as heliospheric current sheets and velocity shears can play an important role in modifying the properties of the turbulence.

قيم البحث

اقرأ أيضاً

The slow solar wind is typically characterized as having low Alfvenicity. However, Parker Solar Probe (PSP) observed predominately Alfvenic slow solar wind during several of its initial encounters. From its first encounter observations, about 55.3% o f the slow solar wind inside 0.25 au is highly Alfvenic ($|sigma_C| > 0.7$) at current solar minimum, which is much higher than the fraction of quiet-Sun-associated highly Alfvenic slow wind observed at solar maximum at 1 au. Intervals of slow solar wind with different Alfvenicities seem to show similar plasma characteristics and temperature anisotropy distributions. Some low Alfvenicity slow wind intervals even show high temperature anisotropies, because the slow wind may experience perpendicular heating as fast wind does when close to the Sun. This signature is confirmed by Wind spacecraft measurements as we track PSP observations to 1 au. Further, with nearly 15 years of Wind measurements, we find that the distributions of plasma characteristics, temperature anisotropy and helium abundance ratio ($N_alpha/N_p$) are similar in slow winds with different Alfvenicities, but the distributions are different from those in the fast solar wind. Highly Alfvenic slow solar wind contains both helium-rich ($N_alpha/N_psim0.045$) and helium-poor ($N_alpha/N_psim0.015$) populations, implying it may originate from multiple source regions. These results suggest that highly Alfvenic slow solar wind shares similar temperature anisotropy and helium abundance properties with regular slow solar winds, and they thus should have multiple origins.
137 - Y. Y. Liu , H. S. Fu , J. B. Cao 2021
We present a statistical analysis for the characteristics and spatial evolution of the interplanetary discontinuities (IDs) in the solar wind, from 0.13 to 0.9 au, by using the Parker Solar Probe measurements on Orbits 4 and 5. 3948 IDs have been col lected, including 2511 rotational discontinuities (RDs) and 557 tangential discontinuities (TDs), with the remnant unidentified. The statistical results show that (1) the ID occurrence rate decreases from 200 events/day at 0.13 au to 1 events/day at 0.9 au, following a spatial scaling r-2.00, (2) the RD to TD ratio decreases quickly with the heliocentric distance, from 8 at r<0.3 au to 1 at r>0.4 au, (3) the magnetic field tends to rotate across the IDs, 45{deg} for TDs and 30{deg} for RDs in the pristine solar wind within 0.3 au, (4) a special subgroup of RDs exist within 0.3 au, characterized by small field rotation angles and parallel or antiparallel propagations to the background magnetic fields, (5) the TD thicknesses normalized by local ion inertial lengths (di) show no clear spatial scaling and generally range from 5 to 35 di, and the normalized RD thicknesses follow r-1.09 spatial scaling, (6) the outward (anti-sunward) propagating RDs predominate in all RDs, with the propagation speeds in the plasma rest frame proportional to r-1.03. This work could improve our understandings for the ID characteristics and evolutions and shed light on the study of the turbulent environment in the pristine solar wind.
We investigate the solar wind energy flux in the inner heliosphere using 12-day observations around each perihelion of Encounter One (E01), Two (E02), Four (E04), and Five (E05) of Parker Solar Probe (PSP), respectively, with a minimum heliocentric d istance of 27.8 solar radii ($R_odot{}$). Energy flux was calculated based on electron parameters (density $n_e$, core electron temperature $T_{c}$, and suprathermal electron temperature $T_{h}$) obtained from the simplified analysis of the plasma quasi-thermal noise (QTN) spectrum measured by RFS/FIELDS and the bulk proton parameters (bulk speed $V_p$ and temperature $T_p$) measured by the Faraday Cup onboard PSP, SPC/SWEAP. Combining observations from E01, E02, E04, and E05, the averaged energy flux value normalized to 1 $R_odot{}$ plus the energy necessary to overcome the solar gravitation ($W_{R_odot{}}$) is about 70$pm$14 $W m^{-2}$, which is similar to the average value (79$pm$18 $W m^{-2}$) derived by Le Chat et al from 24-year observations by Helios, Ulysses, and Wind at various distances and heliolatitudes. It is remarkable that the distributions of $W_{R_odot{}}$ are nearly symmetrical and well fitted by Gaussians, much more so than at 1 AU, which may imply that the small heliocentric distance limits the interactions with transient plasma structures.
The shape of the electron velocity distribution function plays an important role in the dynamics of the solar wind acceleration. Electrons are normally modelled with three components, the core, the halo, and the strahl. We investigate how well the fa st strahl electrons in the inner heliosphere preserve the information about the coronal electron temperature at their origin. We analysed the data obtained by two missions, Helios spanning the distances between 65 and 215 R$_S$, and Parker Solar Probe (PSP) reaching down to 35 R$_S$ during its first two orbits around the Sun. The electron strahl was characterised with two parameters, pitch-angle width (PAW), and the strahl parallel temperature (T$_{sparallel}$). PSP observations confirm the already reported dependence of strahl PAW on core parallel plasma beta ($beta_{ecparallel}$)citep{Bercic2019}. Most of the strahl measured by PSP appear narrow with PAW reaching down to 30$^o$. The portion of the strahl velocity distribution function aligned with the magnetic field is for the measured energy range well described by a Maxwellian distribution function. T$_{sparallel}$ was found to be anti-correlated with the solar wind velocity, and independent of radial distance. These observations imply that T$_{sparallel}$ carries the information about the coronal electron temperature. The obtained values are in agreement with coronal temperatures measured using spectroscopy (David et al. 2998), and the inferred solar wind source regions during the first orbit of PSP agree with the predictions using a PFSS model (Bale et al. 2019, Badman et al. 2019).
A series of solar energetic particle (SEP) events were observed at Parker Solar Probe (PSP) by the Integrated Science Investigation of the Sun (ISOIS) during the period from April 18, 2019 through April 24, 2019. The PSP spacecraft was located near 0 .48 au from the Sun on Parker spiral field lines that projected out to 1 au within $sim 25^circ$ of near Earth spacecraft. These SEP events, though small compared to historically large SEP events, were amongst the largest observed thus far in the PSP mission and provide critical information about the space environment inside 1 au during SEP events. During this period the Sun released multiple coronal mass ejections (CMEs). One of these CMEs observed was initiated on April 20, 2019 at 01:25 UTC, and the interplanetary CME (ICME) propagated out and passed over the PSP spacecraft. Observations by the Electromagnetic Fields Investigation (FIELDS) show that the magnetic field structure was mostly radial throughout the passage of the compression region and the plasma that followed, indicating that PSP did not directly observe a flux rope internal to the ICME, consistent with the location of PSP on the ICME flank. Analysis using relativistic electrons observed near Earth by the Electron, Proton and Alpha Monitor (EPAM) on the Advanced Composition Explorer (ACE) demonstrates the presence of electron seed populations (40--300 keV) during the events observed. The energy spectrum of the ISOIS~ observed proton seed population below 1 MeV is close to the limit of possible stationary state plasma distributions out of equilibrium. ISOIS~ observations reveal the revise{enhancement} of seed populations during the passage of the ICME, which revise{likely indicates a key part} of the pre-acceleration process that occurs close to the Sun.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا