ﻻ يوجد ملخص باللغة العربية
We study the interaction energy between two graphene nanoribbons by first principles calculations, including van der Waals interactions and spin polarization. For ultranarrow zigzag nanoribbons, the direct stacking is even more stable than Bernal, competing in energy for wider ribbons. This behavior is due to the magnetic interaction between edge states. We relate the reduction of the magnetization in zigzag nanoribbons with increasing ribbon width to the structural changes produced by the magnetic interaction, and show that when deposited on a substrate, zigzag bilayer ribbons remain magnetic for larger widths.
We show that a domain wall separating single layer graphene (SLG) and AA-stacked bilayer graphene (AA-BLG) can be used to generate highly collimated electron beams which can be steered by a magnetic field. Such system exists in two distinct configura
When two planar atomic membranes are placed within the van der Waals distance, the charge and heat transport across the interface are coupled by the rules of momentum conservation and structural commensurability, leading to outstanding thermoelectric
Even if individual two-dimensional materials own various interesting and unexpected properties, the stacking of such layers leads to van der Waals solids which unite the characteristics of two dimensions with novel features originating from the inter
Graphene constitutes one of the key elements in many functional van der Waals heterostructures. However, it has negligible optical visibility due to its monolayer nature. Here we study the visibility of graphene in various van der Waals heterostructu
Spin orbit coupling (SOC) is the key to realizing time-reversal invariant topological phases of matter. Famously, SOC was predicted by Kane and Mele to stabilize a quantum spin Hall insulator; however, the weak intrinsic SOC in monolayer graphene has