ﻻ يوجد ملخص باللغة العربية
Massive evolved stars can produce large amounts of dust, and far-infrared (IR) data are essential for determining the contribution of cold dust to the total dust mass. Using Herschel, we search for cold dust in three very dusty massive evolved stars in the Large Magellanic Cloud: R71 is a Luminous Blue Variable, HD36402 is a Wolf-Rayet triple system, and IRAS05280-6910 is a red supergiant. We model the spectral energy distributions using radiative transfer codes and find that these three stars have mass-loss rates up to 10^-3 solar masses/year, suggesting that high-mass stars are important contributors to the life-cycle of dust. We found far-IR excesses in two objects, but these excesses appear to be associated with ISM and star-forming regions. Cold dust (T < 100 K) may thus not be an important contributor to the dust masses of evolved stars.
We study a group of evolved M-stars in the Large Magellanic Cloud, characterized by a peculiar spectral energy distribution. While the $9.7~mu$m feature arises from silicate particles, the whole infrared data seem to suggest the presence of an additi
Common Envelope (CE) systems are the result of Roche lobe overflow in interacting binaries. The subsequent evolution of the CE, its ejection and the formation of dust in its ejecta while the primary is on the Red Giant Branch, gives rise to a recentl
We review the observational evidence for dust formation in Wolf-Rayet binary systems and in Type II Supernova ejecta. Existing theoretical models describing the condensation of solids in carbon-rich Wolf-Rayet stars and in Supernovae close by and at
We present JCMT SCUBA-2 $450mu$m and $850mu$m observations of 14 Asymptotic Giant Branch (AGB) stars (9 O--rich, 4 C-rich and 1 S--type) and one Red Supergiant (RSG) in the Solar Neighbourhood. We combine these observations with emph{Herschel}/PACS o
We study the evolved stellar population of the Local Group galaxy IC10, with the aim of characterizing the individual sources observed and to derive global information on the galaxy, primarily the star formation history and the dust production rate.