ﻻ يوجد ملخص باللغة العربية
We predict a novel nonlinear electromagnetic phenomenon in layered superconducting slabs irradiated from one side by an electromagnetic plane wave. We show that the reflectance and transmittance of the slab can vary over a wide range, from nearly zero to one, when changing the incident wave amplitude. Thus changing the amplitude of the incident wave can induce either the total transmission or reflection of the incident wave. In addition, the dependence of the superconductor transmittance on the incident wave amplitude has an unusual hysteretic behavior with jumps. This remarkable nonlinear effect (self-induced transparency) can be observed even at small amplitudes, when the wave frequency $omega$ is close to the Josephson plasma frequency $omega_J$.
The increased transmission, observed in the EXAFS region of their X-ray absorption spectra, as cuprate materials go through the superconducting transition temperature Tc is correlated with an increase in Abrikosov Vortex expulsion in zero magnetic field as the temperature T approaches Tc.
In the phenomenon of electromagnetically induced transparency1 (EIT) of a three-level atomic system, the linear susceptibility at the dipole-allowed transition is canceled through destructive interference of the direct transition and an indirect tran
Superconductivity arises from two distinct quantum phenomena: electron pairing and long-range phase coherence. In conventional superconductors, the two quantum phenomena generally take place simultaneously, while the electron pairing occurs at higher
Magnetotransport theory of layered superconductors in the flux flow steady state is revisited. Longstanding controversies concerning observed Hall sign reversals are resolved. The conductivity separates into a Bardeen-Stephen vortex core contribution
The phonon-mode decomposition of the electron-phonon coupling in the MgB2-like system Li_{1-x}BC is explored using first principles calculations. It is found that the high temperature superconductivity of such systems results from extremely strong co