ﻻ يوجد ملخص باللغة العربية
Single-crystalline thin film of an iridium dioxide polymorph Ir2O4 has been fabricated by the pulsed laser deposition of LixIr2O4 precursor and the subsequent Li-deintercalation using soft chemistry. Ir2O4 crystallizes in a spinel (AB2O4) without A cations in the tetrahedral site, which is isostructural to lambda-MnO2. Ir ions form a pyrochlore sublattice, which is known to give rise to a strong geometrical frustration. This Ir spinel was found to be a narrow gap insulator, in remarkable contrast to the metallic ground state of rutile-type IrO2. We argue that an interplay of strong spin-orbit coupling and a Coulomb repulsion gives rise to an insulating ground state as in a layered perovskite Sr2IrO4.
Resonant x-ray diffraction experiments were performed for the metallic iridium oxide IrO$_{2}$. We observed anisotropic tensor of susceptibility (ATS) scattering, the spectrum of which shows a sharp contrast between the $L_{3}$ and $L_{2}$ edges. At
We demonstrate via a muon spin rotation experiment that the electronic ground state of the iridium spinel compound, CuIr$_2$S$_4$, is not the presumed spin-singlet state but a novel paramagnetic state, showing a quasistatic spin glass-like magnetism
We have prepared polycrystalline samples of the trimer Ir oxide BaIrO3 with face-shared Ir3O12 trimers, and have investigated the origin of the phase transition at 182 K by measuring resistivity, thermopower, magnetization and synchrotron x-ray diffr
We report the formation and observation of an electron liquid in Sr$_{2-x}$La$_{x}$TiO$_4$, the quasi-two-dimensional counterpart of SrTiO$_3$, through reactive molecular-beam epitaxy and {it in situ} angle-resolved photoemission spectroscopy. The lo
We performed nuclear magnetic resonance (NMR) and muon spin relaxation ({mu}SR) experiments to identify the magnetic ground state of the frustrated quantum A-site spinel, CuAl2O4. Our results verify that the ground state does not exhibit a long-range