ترغب بنشر مسار تعليمي؟ اضغط هنا

HerMES: Far-infrared properties of known AGN in the HerMES fields

230   0   0.0 ( 0 )
 نشر من قبل Rob Ivison
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Nuclear and starburst activity are known to often occur concomitantly. Herschel-SPIRE provides sampling of the FIR SEDs of type 1 and type 2 AGN, allowing for the separation between the hot dust (torus) and cold dust (starburst) emission. We study large samples of spectroscopically confirmed type 1 and type 2 AGN lying within the Herschel Multi-tiered Extragalactic Survey (HerMES) fields observed during the science demonstration phase, aiming to understand their FIR colour distributions and constrain their starburst contributions. We find that one third of the spectroscopically confirmed AGN in the HerMES fields have 5-sigma detections at 250um, in agreement with previous (sub)mm AGN studies. Their combined Spitzer-MIPS and Herschel-SPIRE colours - specifically S(250)/S(70) vs. S(70)/S(24) - quite clearly separate them from the non-AGN, star-forming galaxy population, as their 24-um flux is dominated by the hot torus emission. However, their SPIRE colours alone do not differ from those of non-AGN galaxies. SED fitting shows that all those AGN need a starburst component to fully account for their FIR emission. For objects at z > 2, we find a correlation between the infrared luminosity attributed to the starburst component, L(SB), and the AGN accretion luminosity, L(acc), with L(SB) propto L(acc)^0.35. Type 2 AGN detected at 250um show on average higher L(SB) than type 1 objects but their number is still too low to establish whether this trend indicates stronger star-formation activity.



قيم البحث

اقرأ أيضاً

418 - S. Heinis , V.Buat , M. Bethermin 2012
We study the far-infrared (IR) and sub-millimeter properties of a sample of ultraviolet (UV) selected galaxies at zsim1.5. Using stacking at 250, 350 and 500 um from Herschel Space Observatory SPIRE imaging of the COSMOS field obtained within the Her MES key program, we derive the mean IR luminosity as a function of both UV luminosity and slope of the UV continuum beta. The IR to UV luminosity ratio is roughly constant over most of the UV luminosity range we explore. We also find that the IR to UV luminosity ratio is correlated with beta. We observe a correlation that underestimates the correlation derived from low-redshift starburst galaxies, but is in good agreement with the correlation derived from local normal star-forming galaxies. Using these results we reconstruct the IR luminosity function of our UV-selected sample. This luminosity function recovers the IR luminosity functions measured from IR selected samples at the faintest luminosities (Lir ~ 10^{11} L_sun), but might underestimate them at the bright-end (Lir > 5.10^{11} L_sun). For galaxies with 10^{11}<Lir/L_sun<10^{13}, the IR luminosity function of a UV selection recovers (given the differences in IR-based estimates) 52-65 to 89-112 per cent of the star-formation rate density derived from an IR selection. The cosmic star-formation rate density derived from this IR luminosity function is 61-76 to 100-133 per cent of the density derived from IR selections at the same epoch. Assuming the latest Herschel results and conservative stacking measurements, we use a toy model to fully reproduce the far IR luminosity function from our UV selection at zsim 1.5. This suggests that a sample around 4 magnitudes deeper (i.e. reaching u sim 30 mag) and a large dispersion of the IR to UV luminosity ratio are required.
158 - N. Seymour 2010
We examine the rest-frame far-infrared emission from powerful radio sources with 1.4GHz luminosity densities of 25<=log(L_1.4/WHz^-1)<=26.5 in the extragalactic Spitzer First Look Survey field. We combine Herschel/SPIRE flux densities with Spitzer/IR AC and MIPS infrared data to obtain total (8-1000um) infrared luminosities for these radio sources. We separate our sources into a moderate, 0.4<z<0.9, and a high, 1.2<z<3.0, redshift sub-sample and we use Spitzer observations of a z<0.1 3CRR sample as a local comparison. By comparison to numbers from the SKA Simulated Skies we find that our moderate redshift sample is complete and our high redshift sample is 14per cent complete. We constrain the ranges of mean star formation rates (SFRs) to be 3.4-4.2, 18-41 and 80-581Msun/yr for the local, moderate and high redshift samples respectively. Hence, we observe an increase in the mean SFR with increasing redshift which we can parameterise as ~(1+z)^Q, where Q=4.2+/-0.8. However we observe no trends of mean SFR with radio luminosity within the moderate or high redshift bins. We estimate that radio-loud AGN in the high redshift sample contribute 0.1-0.5per cent to the total SFR density at that epoch. Hence, if all luminous starbursts host radio-loud AGN we infer a radio-loud phase duty cycle of 0.001-0.005.
The reliability of infrared (IR) and ultraviolet (UV) emissions to measure star formation rates in galaxies is investigated for a large sample of galaxies observed with the SPIRE and PACS instruments on Herschel as part of the HerMES project. We buil d flux-limited 250 micron samples of sources at redshift z<1, cross-matched with the Spitzer/MIPS and GALEX catalogues. About 60 % of the Herschel sources are detected in UV. The total IR luminosities, L_IR, of the sources are estimated using a SED-fitting code that fits to fluxes between 24 and 500 micron. Dust attenuation is discussed on the basis of commonly-used diagnostics: the L_IR/L_UV ratio and the slope, beta, of the UV continuum. A mean dust attenuation A_UV of ~ 3 mag is measured in the samples. L_IR/L_UV is found to correlate with L_IR. Galaxies with L_IR > 10 ^{11} L_sun and 0.5< z<1 exhibit a mean dust attenuation A_UV about 0.7 mag lower than that found for their local counterparts, although with a large dispersion. Our galaxy samples span a large range of beta and L_IR/L_UV values which, for the most part, are distributed between the ranges defined by the relations found locally for starburst and normal star-forming galaxies. As a consequence the recipe commonly applied to local starbursts is found to overestimate the dust attenuation correction in our galaxy sample by a factor ~2-3 .
132 - H. T. Nguyen , B. Schulz 2010
We report on the sensitivity of SPIRE photometers on the Herschel Space Observatory. Specifically, we measure the confusion noise from observations taken during the Science Demonstration Phase of the Herschel Multi-tiered Extragalactic Survey. Confus ion noise is defined to be the spatial variation of the sky intensity in the limit of infinite integration time, and is found to be consistent among the different fields in our survey at the level of 5.8, 6.3 and 6.8 mJy/beam at 250, 350 and 500 microns, respectively. These results, together with the measured instrument noise, may be used to estimate the integration time required for confusion-limited maps, and provide a noise estimate for maps obtained by SPIRE.
137 - M. P. Viero , L. Wang , M. Zemcov 2012
We present measurements of the auto- and cross-frequency power spectra of the cosmic infrared background (CIB) at 250, 350, and 500um (1200, 860, and 600 GHz) from observations totaling ~ 70 deg^2 made with the SPIRE instrument aboard the Herschel Sp ace Observatory. We measure a fractional anisotropy dI / I = 14 +- 4%, detecting signatures arising from the clustering of dusty star-forming galaxies in both the linear (2-halo) and non-linear (1-halo) regimes; and that the transition from the 2- to 1-halo terms, below which power originates predominantly from multiple galaxies within dark matter halos, occurs at k_theta ~ 0.1 - 0.12 arcmin^-1 (l ~ 2160 - 2380), from 250 to 500um. New to this paper is clear evidence of a dependence of the Poisson and 1-halo power on the flux-cut level of masked sources --- suggesting that some fraction of the more luminous sources occupy more massive halos as satellites, or are possibly close pairs. We measure the cross-correlation power spectra between bands, finding that bands which are farthest apart are the least correlated, as well as hints of a reduction in the correlation between bands when resolved sources are more aggressively masked. In the second part of the paper we attempt to interpret the measurements in the framework of the halo model. With the aim of fitting simultaneously with one model the power spectra, number counts, and absolute CIB level in all bands, we find that this is achievable by invoking a luminosity-mass relationship, such that the luminosity-to-mass ratio peaks at a particular halo mass scale and declines towards lower and higher mass halos. Our best-fit model finds that the halo mass which is most efficient at hosting star formation in the redshift range of peak star-forming activity, z ~ 1-3, is log(M_peak/M_sun) ~ 12.1 +- 0.5, and that the minimum halo mass to host infrared galaxies is log(M_min/M_sun) ~ 10.1 +- 0.6.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا