ترغب بنشر مسار تعليمي؟ اضغط هنا

Dilatometric Study of LiHoF4 In a Transverse Magnetic Field

114   0   0.0 ( 0 )
 نشر من قبل John Dunn
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Theoretical and experimental work have not provided a consistent picture of the phase diagram of the nearly ideal Ising ferromagnet LiHoF4 in a transverse magnetic field. Using a newly fabricated capacitive dilatometer, we have investigated the thermal expansion and magnetostriction of LiHoF4 in magnetic fields applied perpendicular to the Ising direction. Critical points for the ferromagnetic phase transition have been determined from both methods in the classical paramagnetic to ferromagnetic regime. Excellent agreement has been found with existing experimental data suggesting that, in this regime, the current theoretical calculations have not entirely captured the physics of this interesting model system.



قيم البحث

اقرأ أيضاً

P.B. Chakraborty {it et al.}, Phys. Rev. B {bf 70}, 144411 (2004)) study of the LiHoF$_4$ Ising magnetic material in an external transverse magnetic field $B_x$ show a discrepancy with the experimental results, even for small $B_x$ where quantum fluc tuations are small. This discrepancy persists asymptotically close to the classical ferromagnet to paramagnet phase transition. In this paper, we numerically reinvestigate the temperature $T$, versus transverse field phase diagram of LiHoF$_4$ in the regime of weak $B_x$. In this regime, starting from an effective low-energy spin-1/2 description of LiHoF$_4$, we apply a cumulant expansion to derive an effective temperature-dependent classical Hamiltonian that incorporates perturbatively the small quantum fluctuations in the vicinity of the classical phase transition at $B_x=0$. Via this effective classical Hamiltonian, we study the $B_x-T$ phase diagram via classical Monte Carlo simulations. In particular, we investigate the influence on the phase diagram of various effects that may be at the source of the discrepancy between the previous QMC results and the experimental ones. For example, we consider two different ways of handling the long-range dipole-dipole interactions and explore how the $B_x-T$ phase diagram is modified when using different microscopic crystal field Hamiltonians. The main conclusion of our work is that we fully reproduce the previous QMC results at small $B_x$. Unfortunately, none of the modifications to the microscopic Hamiltonian that we explore are able to provide a $B_x-T$ phase diagram compatible with the experiments in the small semi-classical $B_x$ regime.
Heisenberg spin-1/2 chain materials are known to substantially alter their static and dynamic properties when experiencing an effective transverse staggered field originating from the varying local environment of the individual spins. We present a te mperature-, angular- and field-dependent 29Si NMR study of the model compound BaCu2Si2O7. The experimental data are interpreted in terms of the divergent low-temperature transverse susceptibility, predicted by theory for spin chains in coexisting longitudinal and transverse staggered fields. Our analysis first employs a finite-temperature Density Matrix Renormalization Group (DMRG) study of the relevant one-dimensional Hamiltonian. Next we compare our numerical with the presently known analytical results. With an analysis based on crystal symmetries we show how the anisotropic contribution to the sample magnetization is experimentally accessible even below the ordering temperature, in spite of its competition with the collinear order parameter of the antiferromagnetic phase. The modification of static and dynamic properties of the system due to the presence of a local transverse staggered field (LTSF) acting on the one-dimensional spin array are argued to cause the unusual spin reorientation transitions observed in BaCu2Si2O7. On the basis of a Ginzburg-Landau type analysis, we discuss aspects of competing spin structures in the presence of magnetic order and the enhanced transverse susceptibility.
We consider an alternating Heisenberg spin-$1/2$ antiferromagnetic-ferromagnetic ($AF-F$) chain with the space modulated dominant antiferromagnetic exchange and anisotropic ferromagnetic coupling (tetrameric spin-$1/2$ chain). The zero-temperature ef fect of a symmetry breaking transverse magnetic field on the model is studied numerically. It is found that the anisotropy effect on the ferromagnetic coupling induces two new gapped phases. We identified their orderings as a kind of the stripe-antiferromagnetic phase. As a result, the magnetic phase diagram of the tetrameric chain shows five gapped quantum phases and the system is characterized by four critical fields which mark quantum phase transitions in the ground state of the system with the changing transverse magnetic field. We have also exploited the well known bipartite entanglement (name as concurrence) and global entanglement tools to verify the occurrence of quantum phase transitions and the corresponding critical points.
The field-induced transition in one-dimensional S=1 Heisenberg antiferromagnet with single-ion anisotropy in the presence of a transverse magnetic field is obtained on the basis of the Schwinger boson mean-field theory. The behaviors of the specific heat and susceptibility as functions of temperature as well as the applied transverse field are explored, which are found to be different from the results obtained under a longitudinal field. The anomalies of the specific heat at low temperatures, which might be an indicative of a field-induced transition from a Luttinger liquid phase to an ordered phase, are explicitly uncovered under the transverse field. A schematic phase diagram is proposed. The theoretical results are compared with experimental observations.
120 - M. Siahatgar , A. Langari 2007
We have numerically studied the thermodynamic properties of the spin 1/2 XXZ chain in the presence of a transverse (non commuting) magnetic field. The thermal, field dependence of specific heat and correlation functions for chains up to 20 sites have been calculated. The area where the specific heat decays exponentially is considered as a measure of the energy gap. We have also obtained the exchange interaction between chains in a bulk material using the random phase approximation and derived the phase diagram of the three dimensional material with this approximation. The behavior of the structure factor at different momenta verifies the antiferromagnetic long range order in y-direction for the three dimensional case. Moreover, we have concluded that the Low Temperature Lanczos results [M. Aichhorn et al., Phys. Rev. B 67, 161103(R) (2003)] are more accurate for low temperatures and closer to the full diagonalization ones than the results of Finite Temperature Lanczos Method [J. Jaklic and P. Prelovsek, Phys. Rev. B 49, 5065 (1994)].
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا