ﻻ يوجد ملخص باللغة العربية
The field-induced transition in one-dimensional S=1 Heisenberg antiferromagnet with single-ion anisotropy in the presence of a transverse magnetic field is obtained on the basis of the Schwinger boson mean-field theory. The behaviors of the specific heat and susceptibility as functions of temperature as well as the applied transverse field are explored, which are found to be different from the results obtained under a longitudinal field. The anomalies of the specific heat at low temperatures, which might be an indicative of a field-induced transition from a Luttinger liquid phase to an ordered phase, are explicitly uncovered under the transverse field. A schematic phase diagram is proposed. The theoretical results are compared with experimental observations.
We analyze the gaps in the excitation spectrum of a Haldane chain with single-ion anisotropy in a staggered field. We show that the gap along the direction of the field increases at a faster rate than the others, while its spectral weight decreases, being transferred to a two-magnon continuum.
We report on magnetization, sound velocity, and magnetocaloric-effect measurements of the Ising-like spin-1/2 antiferromagnetic chain system BaCo$_2$V$_2$O$_8$ as a function of temperature down to 1.3 K and applied transverse magnetic field up to 60
Inelastic neutron scattering was used to measure the magnetic field dependence of spin excitations in the antiferromagnetic S=1/2 chain CuCl_2 2(dimethylsulfoxide) (CDC) in the presence of uniform and staggered fields. Dispersive bound states emerge
Field-induced magnetic ordering in the Haldane chain compound SrNi$_{2}$V$_{2}$O$_{8}$ and effect of anisotropy have been investigated using single crystals. Static susceptibility, inelastic neutron scattering, high-field magnetization, and low tempe
Frustrated magnets can exhibit many novel forms of order when exposed to high magnetic fields, however, much less is known about materials where frustration occurs in the presence of itinerant electrons. Here we report thermodynamic and transport mea