ترغب بنشر مسار تعليمي؟ اضغط هنا

Inverse Cotton-Mouton effect of the Vacuum and of atomic systems

155   0   0.0 ( 0 )
 نشر من قبل Mathilde Fouche
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف C. Rizzo




اسأل ChatGPT حول البحث

In this letter we calculate the Inverse Cotton-Mouton Effect (ICME) for the vacuum following the predictions of Quantum ElectroDynamics. We compare the value of this effect for the vacuum with the one expected for atomic systems. We finally show that ICME could be measured for the first time for noble gases using state-of-the-art laser systems and for the quantum vacuum with near-future laser facilities like ELI and HiPER, providing in particular a test of the nonlinear behaviour of quantum vacuum at intensities below the Schwinger limit of 4.5x10^33 W/m^2.

قيم البحث

اقرأ أيضاً

We report the observation of the Inverse Cotton-Mouton Effect (ICME) i.e. a magnetization induced in a medium by non resonant linearly polarized light propagating in the presence of a transverse magnetic field. We present a detailed study of the ICME in a TGG crystal showing the dependence of the measured effect on the light intensity, the optical polarization, and on the external magnetic field. We derive a relation between the Cotton-Mouton and Inverse Cotton-Mouton effects that is roughly in agreement with existing experimental data. Our results open the way to applications of the ICME in optical devices.
126 - Sidney Burks 2009
We report the experimental generation of squeezed light at 852 nm, locked on the Cesium D2 line. 50% of noise reduction down to 50 kHz has been obtained with a doubly resonant optical parametric oscillator operating below threshold, using a periodica lly-polled KTP crystal. This light is directly utilizable with Cesium atomic ensembles for quantum networking applications
The control of light-matter interaction at the quantum level usually requires coherent laser fields. But already an exchange of virtual photons with the electromagnetic vacuum field alone can lead to quantum coherences, which subsequently suppress sp ontaneous emission. We demonstrate such spontaneously generated coherences (SGC) in a large ensemble of nuclei operating in the x-ray regime, resonantly coupled to a common cavity environment. The observed SGC originates from two fundamentally different mechanisms related to cooperative emission and magnetically controlled anisotropy of the cavity vacuum. This approach opens new perspectives for quantum control, quantum state engineering and simulation of quantum many-body physics in an essentially decoherence-free setting.
We revisit the Unruh effect to investigate how finite acceleration would affect a scalar condensate. We discuss a negative thermal-like correction associated with acceleration. From the correspondence between thermo-field dynamics and acceleration ef fects we give an explanation for this negative sign. Using this result and solving the gap equation we show that the condensate should increase with larger acceleration.
We demonstrate the superior performance of fluoride coated versus oxide coated mirrors in long term vacuum operation of a high power deep-ultraviolet enhancement cavity. In high vacuum ($10^{-8}$ mbar), the fluoride optics can maintain up to a record -high 10 w of stable intracavity power on one hour time scales, whereas for the oxide optics, we observe rapid degradation at lower intracavity powers with a rate that increases with power. After observing degradation in high vacuum, we can recover the fluoride and oxide optics with oxygen; however, this recovery process becomes ineffective after several applications. For fluoride coatings, we see that initial UV conditioning in an oxygen environment helps to improve the performances of the optics. In oxygen-rich environments from $sim 10^{-4}$ mbar to 1 mbar, the fluoride optics can stably maintain up to 20 W of intracavity power on several-hour time scales whereas for the oxide optics there is immediate degradation with a rate that increases with decreasing oxygen pressure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا