ترغب بنشر مسار تعليمي؟ اضغط هنا

Vacuum-assisted generation and control of atomic coherences at x-ray energies

69   0   0.0 ( 0 )
 نشر من قبل Joerg Evers
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The control of light-matter interaction at the quantum level usually requires coherent laser fields. But already an exchange of virtual photons with the electromagnetic vacuum field alone can lead to quantum coherences, which subsequently suppress spontaneous emission. We demonstrate such spontaneously generated coherences (SGC) in a large ensemble of nuclei operating in the x-ray regime, resonantly coupled to a common cavity environment. The observed SGC originates from two fundamentally different mechanisms related to cooperative emission and magnetically controlled anisotropy of the cavity vacuum. This approach opens new perspectives for quantum control, quantum state engineering and simulation of quantum many-body physics in an essentially decoherence-free setting.


قيم البحث

اقرأ أيضاً

Modern x-ray light sources promise access to structure and dynamics of matter in largely unexplored spectral regions. However, the desired information is encoded in the light intensity and phase, whereas detectors register only the intensity. This ph ase problem is ubiquitous in crystallography and imaging, and impedes the exploration of quantum effects at x-ray energies. Here, we demonstrate phase-sensitive measurements characterizing the quantum state of a nuclear two-level system at hard x-ray energies. The nuclei are initially prepared in a superposition state. Subsequently, the relative phase of this superposition is interferometrically reconstructed from the emitted x-rays. Our results form a first step towards x-ray quantum state tomography, and provide new avenues for structure determination and precision metrology via x-ray Fano interference.
We propose a protocol for state transfer and entanglement generation between two distant spin qubits (sender and receiver) that have different energies. The two qubits are permanently coupled to a far off-resonant spin-chain, and the qubit of the sen der is driven by an external field, which provides the energy required to bridge the energy gap between the sender and the receiver. State transfer and entanglement generation are achieved via virtual single-photon and multi-photon transitions to the eigenmodes of the channel.
Magnetically coupled hybrid quantum systems enable robust quantum state control through Landau-Zener transitions. Here, we show that an ultracold atomic sample coupled to a nanomechanical resonator via oscillating magnetic fields can be used to cool the resonators mechanical motion, to measure the mechanical temperature, and to enable entanglement of these mesoscopic objects. We calculate the expected coupling for both permanent-magnet and current-conducting nanostring resonators and describe how this hybridization is attainable using recently developed fabrication techniques, including SiN nanostrings and atom chips.
The generation and storage of spin squeezing is an attracting topic in quantum metrology and the foundations of quantum mechanics. The major models to realize the spin squeezing are the one- and two-axis twisting models. Here, we consider a collectiv e spin system coupled to a bosonic field, and show that proper constant-value controls in this model can simulate the dynamical behaviors of these two models. More interestingly, a better performance of squeezing can be obtained when the control is time-varying, which is generated via a reinforcement learning algorithm. However, this advantage becomes limited if the collective noise is involved. To deal with it, we propose a four-step strategy for the construction of a new type of combined controls, which include both constant-value and time-varying controls, but performed at different time intervals. Compared to the full time-varying controls, the combined controls not only give a comparable minimum value of the squeezing parameter over time, but also provides a better lifetime and larger full amount of squeezing. Moreover, the amplitude form of a combined control is simpler and more stable than the full time-varying control. Therefore, our scheme is very promising to be applied in practice to improve the generation and storage performance of squeezing.
We study the perspectives of measuring the phenomenon of vacuum birefringence predicted by quantum electrodynamics using an x-ray free-electron laser (XFEL) alone. We devise an experimental scheme allowing the XFEL beam to collide with itself under a finite angle, and thus act as both pump and probe field for the effect. The signature of vacuum birefringence is encoded in polarization-flipped signal photons to be detected with high-purity x-ray polarimetry. Our findings for idealized scenarios underline that the discovery potential of solely XFEL-based setups can be comparable to those involving optical high-intensity lasers. For currently achievable scenarios, we identify several key details of the x-ray optical ingredients that exert a strong influence on the magnitude of the desired signatures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا