ﻻ يوجد ملخص باللغة العربية
Over the last few years, needlets have a emerged as a useful tool for the analysis of Cosmic Microwave Background (CMB) data. Our aim in this paper is first to introduce in the CMB literature a different form of needlets, known as Mexican needlets, first discussed in the mathematical literature by Geller and Mayeli (2009a,b). We then proceed with an extensive study of the properties of both standard and Mexican needlets; these properties depend on some parameters which can be tuned in order to optimize the performance for a given application. Our second aim in this paper is then to give practical advice on how to adjust these parameters in order to achieve the best properties for a given problem in CMB data analysis. In particular we investigate localization properties in real and harmonic spaces and propose a recipe on how to quantify the influence of galactic and point source masks on the needlet coefficients. We also show that for certain parameter values, the Mexican needlets provide a close approximation to the Spherical Mexican Hat Wavelets (whence their name), with some advantages concerning their numerical implementation and the derivation of their statistical properties.
We discuss Spherical Needlets and their properties. Needlets are a form of spherical wavelets which do not rely on any kind of tangent plane approximation and enjoy good localization properties in both pixel and harmonic space; moreover needlets coef
Scalar wavelets have been used extensively in the analysis of Cosmic Microwave Background (CMB) temperature maps. Spin needlets are a new form of (spin) wavelets which were introduced in the mathematical literature by Geller and Marinucci (2008) as a
Accurate lighting estimation is challenging yet critical to many computer vision and computer graphics tasks such as high-dynamic-range (HDR) relighting. Existing approaches model lighting in either frequency domain or spatial domain which is insuffi
This paper is concerned with density estimation of directional data on the sphere. We introduce a procedure based on thresholding on a new type of spherical wavelets called {it needlets}. We establish a minimax result and prove its optimality. We are
We present a novel method for estimation of the fiber orientation distribution (FOD) function based on diffusion-weighted Magnetic Resonance Imaging (D-MRI) data. We formulate the problem of FOD estimation as a regression problem through spherical de