ﻻ يوجد ملخص باللغة العربية
Accurate lighting estimation is challenging yet critical to many computer vision and computer graphics tasks such as high-dynamic-range (HDR) relighting. Existing approaches model lighting in either frequency domain or spatial domain which is insufficient to represent the complex lighting conditions in scenes and tends to produce inaccurate estimation. This paper presents NeedleLight, a new lighting estimation model that represents illumination with needlets and allows lighting estimation in both frequency domain and spatial domain jointly. An optimal thresholding function is designed to achieve sparse needlets which trims redundant lighting parameters and demonstrates superior localization properties for illumination representation. In addition, a novel spherical transport loss is designed based on optimal transport theory which guides to regress lighting representation parameters with consideration of the spatial information. Furthermore, we propose a new metric that is concise yet effective by directly evaluating the estimated illumination maps rather than rendered images. Extensive experiments show that NeedleLight achieves superior lighting estimation consistently across multiple evaluation metrics as compared with state-of-the-art methods.
Illumination estimation from a single image is critical in 3D rendering and it has been investigated extensively in the computer vision and computer graphic research community. On the other hand, existing works estimate illumination by either regress
We discuss Spherical Needlets and their properties. Needlets are a form of spherical wavelets which do not rely on any kind of tangent plane approximation and enjoy good localization properties in both pixel and harmonic space; moreover needlets coef
We present a method to estimate lighting from a single image of an indoor scene. Previous work has used an environment map representation that does not account for the localized nature of indoor lighting. Instead, we represent lighting as a set of di
We tackle the problem of estimating flow between two images with large lighting variations. Recent learning-based flow estimation frameworks have shown remarkable performance on image pairs with small displacement and constant illuminations, but cann
We present a neural network that predicts HDR outdoor illumination from a single LDR image. At the heart of our work is a method to accurately learn HDR lighting from LDR panoramas under any weather condition. We achieve this by training another CNN