ﻻ يوجد ملخص باللغة العربية
We consider spatially coupled code ensembles. A particular instance are convolutional LDPC ensembles. It was recently shown that, for transmission over the binary erasure channel, this coupling increases the belief propagation threshold of the ensemble to the maximum a-priori threshold of the underlying component ensemble. We report on empirical evidence which suggest that the same phenomenon also occurs when transmission takes place over a general binary memoryless symmetric channel. This is confirmed both by simulations as well as by computing EBP GEXIT curves and by comparing the empirical BP thresholds of coupled ensembles to the empirically determined MAP thresholds of the underlying regular ensembles. We further consider ways of reducing the rate-loss incurred by such constructions.
Convolutional LDPC ensembles, introduced by Felstrom and Zigangirov, have excellent thresholds and these thresholds are rapidly increasing as a function of the average degree. Several variations on the basic theme have been proposed to date, all of w
In magnetic-recording systems, consecutive sections experience different signal to noise ratios (SNRs). To perform error correction over these systems, one approach is to use an individual block code for each section. However, the performance over a
The question whether RM codes are capacity-achieving is a long-standing open problem in coding theory that was recently answered in the affirmative for transmission over erasure channels [1], [2]. Remarkably, the proof does not rely on specific prope
Recently, it was observed that spatially-coupled LDPC code ensembles approach the Shannon capacity for a class of binary-input memoryless symmetric (BMS) channels. The fundamental reason for this was attributed to a threshold saturation phenomena der
In this paper we are concerned with the asymptotic analysis of nonbinary spatially-coupled low-density parity-check (SC-LDPC) ensembles defined over GL$left(2^{m}right)$ (the general linear group of degree $m$ over GF$left(2right)$). Our purpose is t