ﻻ يوجد ملخص باللغة العربية
Containing an epidemic at its origin is the most desirable mitigation. Epidemics have often originated in rural areas, with rural communities among the first affected. Disease dynamics in rural regions have received limited attention, and results of general studies cannot be directly applied since population densities and human mobility factors are very different in rural regions from those in cities. We create a network model of a rural community in Kansas, USA, by collecting data on the contact patterns and computing rates of contact among a sampled population. We model the impact of different mitigation strategies detecting closely connected groups of people and frequently visited locations. Within those groups and locations, we compare the effectiveness of random and targeted vaccinations using a Susceptible-Exposed-Infected-Recovered compartmental model on the contact network. Our simulations show that the targeted vaccinations of only 10% of the sampled population reduced the size of the epidemic by 34.5%. Additionally, if 10% of the population visiting one of the most popular locations is randomly vaccinated, the epidemic size is reduced by 19%. Our results suggest a new implementation of a highly effective strategy for targeted vaccinations through the use of popular locations in rural communities.
A two-state epidemic model in networks with links mimicking two kinds of relationships between connected nodes is introduced. Links of weights w1 and w0 occur with probabilities p and 1-p, respectively. The fraction of infected nodes rho(p) shows a n
Defining an optimal protection strategy against viruses, spam propagation or any other kind of contamination process is an important feature for designing new networks and architectures. In this work, we consider decentralized optimal protection stra
Pathogens can spread epidemically through populations. Beneficial contagions, such as viruses that enhance host survival or technological innovations that improve quality of life, also have the potential to spread epidemically. How do the dynamics of
To improve the accuracy of network-based SIS models we introduce and study a multilayer representation of a time-dependent network. In particular, we assume that individuals have their long-term (permanent) contacts that are always present, identifyi
We study structural changes of adaptive networks in the co-evolutionary susceptible-infected-susceptible (SIS) network model along its phase transition. We clarify to what extent these changes can be used as early-warning signs for the transition at