ﻻ يوجد ملخص باللغة العربية
Many complex networks exhibit vulnerability to spreading of epidemics, and such vulnerability relates to the viral strain as well as to the network characteristics. For instance, the structure of the network plays an important role in spreading of epidemics. Additionally, properties of previous epidemic models require prior knowledge of the complex network structure, which means the models are limited to only well-known network structures. In this paper, we propose a new epidemiological SIR model based on the continuous time Markov chain, which is generalized to any type of network. The new model is capable of evaluating the states of every individual in the network. Through mathematical analysis, we prove an epidemic threshold exists below which an epidemic does not propagate in the network. We also show that the new epidemic threshold is inversely proportional to the spectral radius of the network. In particular, we employ the new epidemic model as a novel measure to assess the vulnerability of networks to the spread of epidemics. The new measure considers all possible effective infection rates that an epidemic might possess. Next, we apply the measure to correlated networks to evaluate the vulnerability of disassortative and assortative scalefree networks. Ultimately, we verify the accuracy of the theoretical epidemic threshold through extensive numerical simulations. Within the set of tested networks, the numerical results show that disassortative scale-free networks are more vulnerable to spreading of epidemics than assortative scale-free networks.
We develop a generalized group-based epidemic model (GgroupEM) framework for any compartmental epidemic model (for example; susceptible-infected-susceptible, susceptible-infected-recovered, susceptible-exposed-infected-recovered). Here, a group consi
The study of complex networks sheds light on the relation between the structure and function of complex systems. One remarkable result is the absence of an epidemic threshold in infinite-size scale-free networks, which implies that any infection will
The fundamental idea of embedding a network in a metric space is rooted in the principle of proximity preservation. Nodes are mapped into points of the space with pairwise distance that reflects their proximity in the network. Popular methods employe
In recent years the research community has accumulated overwhelming evidence for the emergence of complex and heterogeneous connectivity patterns in a wide range of biological and sociotechnical systems. The complex properties of real-world networks
We investigate the effect of degree correlation on a susceptible-infected-susceptible (SIS) model with a nonlinear cooperative effect (synergy) in infectious transmissions. In a mean-field treatment of the synergistic SIS model on a bimodal network w