ترغب بنشر مسار تعليمي؟ اضغط هنا

Test-field method for mean-field coefficients with MHD background

39   0   0.0 ( 0 )
 نشر من قبل Rheinhardt
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Aims: The test-field method for computing turbulent transport coefficients from simulations of hydromagnetic flows is extended to the regime with a magnetohydrodynamic (MHD) background. Methods: A generalized set of test equations is derived using both the induction equation and a modified momentum equation. By employing an additional set of auxiliary equations, we derive linear equations describing the response of the system to a set of prescribed test fields. Purely magnetic and MHD backgrounds are emulated by applying an electromotive force in the induction equation analogously to the ponderomotive force in the momentum equation. Both forces are chosen to have Roberts flow-like geometry. Results: Examples with an MHD background are studied where the previously used quasi-kinematic test-field method breaks down. In cases with homogeneous mean fields it is shown that the generalized test-field method produces the same results as the imposed-field method, where the field-aligned component of the actual electromotive force from the simulation is used. Furthermore, results for the turbulent diffusivity tensor are given, which are inaccessible to the imposed-field method. For MHD backgrounds, new mean-field effects are found that depend on the occurrence of cross-correlations between magnetic and velocity fluctuations. For strong imposed fields, $alpha$ is found to be quenched proportional to the fourth power of the field strength, regardless of the type of background studied.

قيم البحث

اقرأ أيضاً

160 - Andrea Quadri 2021
We show that in a spontaneously broken effective gauge field theory, quantized in a general background $R_xi$-gauge, also the background fields undergo a non-linear (albeit background-gauge invariant) field redefinition induced by radiative correctio ns. This redefinition proves to be crucial in order to renormalize the coupling constants of gauge-invariant operators in a gauge-independent way. The classical background-quantum splitting is also in general non-linearly deformed (in a non gauge-invariant way) by radiative corrections. Remarkably, such deformations vanish in the Landau gauge, to all orders in the loop expansion.
We present a reformulation of the background field method for Yang-Mills type theories, based on using a superalgebra of generators of BRST and background field transformations. The new approach enables one to implement and consistently use non-linea r gauges in a natural way, by using the requirement of invariance of the fermion gauge-fixing functional under the background field transformations.
Direct numerical simulations of isotropically forced homogeneous stationary turbulence with an imposed passive scalar concentration gradient are compared with an analytical closure model which provides evolution equations for the mean passive scalar flux and variance. Triple correlations of fluctuations appearing in these equations are described in terms of relaxation terms proportional to the quadratic correlations. Three methods are used to extract the relaxation timescales tau_i from direct numerical simulations. Firstly, we insert the closure ansatz into our equations, assume stationarity, and solve for tau_i. Secondly, we use only the closure ansatz itself and obtain tau_i from the ratio of quadratic and triple correlations. Thirdly we remove the imposed passive scalar gradient and fit an exponential decay law to the solution. We vary the Reynolds (Re) and Peclet (Pe) numbers while keeping their ratio at unity and the degree of scale separation and find for large Re fair correspondence between the different methods. The ratio of the turbulent relaxation time of passive scalar flux to the turnover time of turbulent eddies is of the order of three, which is in remarkable agreement with earlier work. Finally we make an effort to extract the relaxation timescales relevant for the viscous and diffusive effects. We find two regimes which are valid for small and large Re, respectively, but the dependence of the parameters on scale separation suggests that they are not universal.
60 - V. V. Pipin 2012
We give a short introduction to the subject and review advances in understanding the basic ingredients of the mean-field dynamo theory. The discussion includes the recent analytic and numerical work in developments for the mean electromotive force of the turbulent flows and magnetic field, the nonlinear effects of the magnetic helicity, the non-local generation effects in the dynamo. We give an example of the mean-field solar dynamo model that incorporates the fairly complete expressions for the mean-electromotive force, the subsurface shear layer and the conservation of the total helicity. The model is used to shed light on the issues in the solar dynamo and on the future development of this field of research.
154 - D. Jacob , K. Haule , G. Kotliar 2008
We present a new method to compute the electronic structure of correlated materials combining the hybrid functional method with the dynamical mean-field theory. As a test example of the method we study cerium sesquioxide, a strongly correlated Mott-b and insulator. The hybrid functional part improves the magnitude of the pd-band gap which is underestimated in the standard approximations to density functional theory while the dynamical mean-field theory part splits the 4f-electron spectra into a lower and an upper Hubbard band.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا