ترغب بنشر مسار تعليمي؟ اضغط هنا

High resolution spectroscopy of the three dimensional cosmic web with close QSO groups

51   0   0.0 ( 0 )
 نشر من قبل Valentina D'Odorico
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the three-dimensional distribution of matter at z~2 using high resolution spectra of QSO pairs and simulated spectra drawn from cosmological hydro-dynamical simulations. We present a sample of 15 QSOs, corresponding to 21 baselines of angular separations evenly distributed between ~1 and 14 arcmin, observed with the Ultraviolet and Visual Echelle Spectrograph (UVES) at the European Southern Observatory-Very Large Telescope (ESO-VLT). The observed correlation functions of the transmitted flux in the HI Lya forest transverse to and along the line of sight are in agreement, implying that the distortions in redshift space due to peculiar velocities are relatively small and - within the relatively large error bars - not significant. The clustering signal is significant up to velocity separations of ~300 km/s, corresponding to about 5 h^{-1} comoving Mpc. Compatibility at the 2 sigma level has been found both for the Auto- and Cross-correlation functions and for the set of the Cross correlation coefficients. The analysis focuses in particular on two QSO groups of the sample. Searching for alignments in the redshift space between Lya absorption lines belonging to different lines of sight, it has been possible to discover the presence of a wide HI structures extending over about ten Mpc in comoving space, and give constraints on the sizes of two cosmic under-dense regions in the intergalactic medium.

قيم البحث

اقرأ أيضاً

We trace the cosmic web at redshifts 1.0 <= z <= 1.8 using the quasar data from the SDSS DR7 QSO catalogue (Schneider et al. 2010). We apply a friend-of-friend (FoF) algorithm to the quasar and random catalogues to determine systems at a series of li nking lengths, and analyse richness and sizes of these systems. At the linking lengths l <= 30 Mpc/h the number of quasar systems is larger than the number of systems detected in random catalogues, and systems themselves have smaller diameters than random systems. The diameters of quasar systems are comparable to the sizes of poor galaxy superclusters in the local Universe, the richest quasar systems have four members. The mean space density of quasar systems is close to the mean space density of local rich superclusters. At intermediate linking lengths (40 <= l <= 70 Mpc/h) the richness and length of quasar systems are similar to those derived from random catalogues. Quasar system diameters are similar to the sizes of rich superclusters and supercluster chains in the local Universe. At the linking length 70 Mpc/h the richest systems of quasars have diameters exceeding 500 Mpc/h. The percolating system which penetrate the whole sample volume appears in quasar sample at smaller linking length than in random samples (85 Mpc/h). Quasar luminosities in systems are not correlated with the system richness. Quasar system catalogues at our web pages http://www.aai.ee/~maret/QSOsystems.html serve as a database to search for superclusters of galaxies and to trace the cosmic web at high redshifts.
This work investigates the alignment of galactic spins with the cosmic web across cosmic time using the cosmological hydrodynamical simulation Horizon-AGN. The cosmic web structure is extracted via the persistent skeleton as implemented in the DISPER SE algorithm. It is found that the spin of low-mass galaxies is more likely to be aligned with the filaments of the cosmic web and to lie within the plane of the walls while more massive galaxies tend to have a spin perpendicular to the axis of the filaments and to the walls. The mass transition is detected with a significance of 9 sigmas. This galactic alignment is consistent with the alignment of the spin of dark haloes found in pure dark matter simulations and with predictions from (anisotropic) tidal torque theory. However, unlike haloes, the alignment of low-mass galaxies is weak and disappears at low redshifts while the orthogonal spin orientation of massive galaxies is strong and increases with time, probably as a result of mergers. At fixed mass, alignments are correlated with galaxy morphology: the high-redshift alignment is dominated by spiral galaxies while elliptical centrals are mainly responsible for the perpendicular signal. These predictions for spin alignments with respect to cosmic filaments and unprecendently walls are successfully compared with existing observations. The alignment of the shape of galaxies with the different components of the cosmic web is also investigated. A coherent and stronger signal is found in terms of shape at high mass. The two regimes probed in this work induce competing galactic alignment signals for weak lensing, with opposite redshift and luminosity evolution. Understanding the details of these intrinsic alignments will be key to exploit future major cosmic shear surveys like Euclid or LSST.
86 - Marius Cautun 2014
The cosmic web is the largest scale manifestation of the anisotropic gravitational collapse of matter. It represents the transitional stage between linear and non-linear structures and contains easily accessible information about the early phases of structure formation processes. Here we investigate the characteristics and the time evolution of morphological components since. Our analysis involves the application of the NEXUS Multiscale Morphology Filter (MMF) technique, predominantly its NEXUS+ version, to high resolution and large volume cosmological simulations. We quantify the cosmic web components in terms of their mass and volume content, their density distribution and halo populations. We employ new analysis techniques to determine the spatial extent of filaments and sheets, like their total length and local width. This analysis identifies cluster and filaments as the most prominent components of the web. In contrast, while voids and sheets take most of the volume, they correspond to underdense environments and are devoid of group-sized and more massive haloes. At early times the cosmos is dominated by tenuous filaments and sheets, which, during subsequent evolution, merge together, such that the present day web is dominated by fewer, but much more massive, structures. The analysis of the mass transport between environments clearly shows how matter flows from voids into walls, and then via filaments into cluster regions, which form the nodes of the cosmic web. We also study the properties of individual filamentary branches, to find long, almost straight, filaments extending to distances larger than 100Mpc/h. These constitute the bridges between massive clusters, which seem to form along approximatively straight lines.
91 - Marius Cautun 2015
We investigate the characteristics and the time evolution of the cosmic web from redshift, z=2, to present time, within the framework of the NEXUS+ algorithm. This necessitates the introduction of new analysis tools optimally suited to describe the v ery intricate and hierarchical pattern that is the cosmic web. In particular, we characterize filaments (walls) in terms of their linear (surface) mass density. This is very good in capturing the evolution of these structures. At early times the cosmos is dominated by tenuous filaments and sheets, which, during subsequent evolution, merge together, such that the present day web is dominated by fewer, but much more massive, structures. We also show that voids are more naturally described in terms of their boundaries and not their centres. We illustrate this for void density profiles, which, when expressed as a function of the distance from void boundary, show a universal profile in good qualitative agreement with the theoretical shell-crossing framework of expanding underdense regions.
The cosmic web is one of the most striking features of the distribution of galaxies and dark matter on the largest scales in the Universe. It is composed of dense regions packed full of galaxies, long filamentary bridges, flattened sheets and vast lo w density voids. The study of the cosmic web has focused primarily on the identification of such features, and on understanding the environmental effects on galaxy formation and halo assembly. As such, a variety of different methods have been devised to classify the cosmic web -- depending on the data at hand, be it numerical simulations, large sky surveys or other. In this paper we bring twelve of these methods together and apply them to the same data set in order to understand how they compare. In general these cosmic web classifiers have been designed with different cosmological goals in mind, and to study different questions. Therefore one would not {it a priori} expect agreement between different techniques however, many of these methods do converge on the identification of specific features. In this paper we study the agreements and disparities of the different methods. For example, each method finds that knots inhabit higher density regions than filaments, etc. and that voids have the lowest densities. For a given web environment, we find substantial overlap in the density range assigned by each web classification scheme. We also compare classifications on a halo-by-halo basis; for example, we find that 9 of 12 methods classify around a third of group-mass haloes (i.e. $M_{rm halo}sim10^{13.5}h^{-1}M_{odot}$) as being in filaments. Lastly, so that any future cosmic web classification scheme can be compared to the 12 methods used here, we have made all the data used in this paper public.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا