ﻻ يوجد ملخص باللغة العربية
Characteristic normal-state charge transport is found in the oxygen-deficient iron-arsenides LnFeAsO1-y (Ln: La and Nd) with the highest Tcs among known Fe-based superconductors. The effect of doping in this system is mainly on the carrier scattering, quite distinct from that in high-Tc cuprates. In the superconducting regime of the La system with maximum Tc = 28 K, the low-temperature resistivity is dominated by a T^2 term. On the other hand, in the Nd system with Tc higher than 40 K, the carriers are subject to stronger scattering showing T-linear resistivity and small magnetoresistance. Such strong scattering appears crucial for high-Tc superconductivity in the iron-based system.
Charge doping of iron-pnictide superconductors leads to collective pinning of flux vortices, whereas isovalent doping does not. Moreover, flux pinning in the charge-doped compounds is consistently described by the mean-free path fluctuations introduc
Insight into the electronic structure of the pnictide family of superconductors is obtained from quantum oscillation measurements. Here we review experimental quantum oscillation data that reveal a transformation from large quasi-two dimensional elec
Based on a two-band model, we study the electronic Raman scattering intensity in both normal and superconducting states of iron-pnictide superconductors. For the normal state, due to the match or mismatch of the symmetries between band hybridization
We show that the zero field normal-state resistivity above Tc for various levels of electron doping - both for LaO1-xFxFeAs (La-1111) and SmO1-xFxFeAs (Sm-1111) members of the 1111-iron-pnictide superconductor family - can be scaled in a broad temper
Nematic order often breaks the tetragonal symmetry of iron-based superconductors. It arises from regular structural transition or electronic instability in the normal phase. Here, we report the observation of a nematic superconducting state, by measu