ترغب بنشر مسار تعليمي؟ اضغط هنا

Shear Photospheric Forcing and the Origin of Turbulence in Coronal Loops

256   0   0.0 ( 0 )
 نشر من قبل Franco Rappazzo
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a series of numerical simulations aimed at understanding the nature and origin of turbulence in coronal loops in the framework of the Parker model for coronal heating. A coronal loop is studied via reduced magnetohydrodynamics simulations in Cartesian geometry. A uniform and strong magnetic field threads the volume between the two photospheric planes, where a velocity field in the form of a 1D shear flow pattern is present. Initially the magnetic field which developes in the coronal loop is a simple map of the photospheric velocity field. This initial configuration is unstable to a multiple tearing instability which develops islands with X and O points in the plane orthogonal to the axial field. Once the nonlinear stage sets in the system evolution is characterized by a regime of MHD turbulence dominated by magnetic energy. A well developed power law in energy spectra is observed and the magnetic field never returns to the simple initial state mapping the photospheric flow. The formation of X and O points in the planes orthogonal to the axial field allows the continued and repeated formation and dissipation of small scale current sheets where the plasma is heated. We conclude that the observed turbulent dynamics are not induced by the complexity of the pattern that the magnetic field-lines footpoints follow but they rather stem from the inherent nonlinear nature of the system.



قيم البحث

اقرأ أيضاً

To understand the nonlinear dynamics of the Parker scenario for coronal heating, long-time high-resolution simulations of the dynamics of a coronal loop in cartesian geometry are carried out. A loop is modeled as a box extended along the direction of the strong magnetic field $B_0$ in which the system is embedded. At the top and bottom plates, which represent the photosphere, velocity fields mimicking photospheric motions are imposed. We show that the nonlinear dynamics is described by different regimes of MHD anisotropic turbulence, with spectra characterized by intertial range power laws whose indexes range from Kolmogorov-like values ($sim 5/3$) up to $sim 3$. We briefly describe the bearing for coronal heating rates.
111 - B.T. Welsch 2014
Some models of coronal heating suppose that convective motions at the photosphere shuffle the footpoints of coronal magnetic fields and thereby inject sufficient magnetic energy upward to account for observed coronal and chromospheric energy losses i n active regions. Using high-resolution observations of plage magnetic fields made with the Solar Optical Telescope aboard the Hinode satellite, we investigate this idea by estimating the upward transport of magnetic energy --- the vertical Poynting flux, S_z --- across the photosphere in a plage region. To do so, we combine: (i) estimates of photospheric horizontal velocities, v_h, determined by local correlation tracking applied to a sequence of line-of-sight magnetic field maps from the Narrowband Filter Imager, with (ii) a vector magnetic field measurement from the SpectroPolarimeter. Plage fields are ideal observational targets for estimating energy injection by convection, because they are: (i) strong enough to be measured with relatively small uncertainties; (ii) not so strong that convection is heavily suppressed (as within umbrae); and (iii) unipolar, so S_z in plage is not influenced by mixed-polarity processes (e.g., flux emergence) unrelated to heating in stable, active-region fields. In this plage region, we found that the average S_z varied in space, but was positive (upward) and sufficient to explain coronal heating, with values near (5 +/- 1) x 10^7 erg/cm^2/s. We find the energy input per unit magnetic flux to be on the order of 10^5 erg/s/Mx. A comparison of intensity in a Ca II image co-registered with the this plage shows stronger spatial correlations with both total field, B, and unsigned vertical field, |B_z|, than either S_z or horizontal field, B_h. The observed Ca II brightness enhancement, however, probably contains a strong contribution from a near-photosphere hot-wall effect unrelated to atmospheric heating.
133 - Tongjiang Wang 2018
Recent observations have revealed the ubiquitous presence of magnetohydrodynamic (MHD) waves and oscillations in the solar corona. The aim of this review is to present recent progress in the observational study of four types of wave (or oscillation) phenomena mainly occurring in active region coronal loops, including (i) flare-induced slow mode oscillations, (ii) fast kink mode oscillations, (iii) propagating slow magnetoacoustic waves, and (iv) ubiquitous propagating kink (Alfvenic) waves. This review not only comprehensively outlines various aspects of these waves and coronal seismology, but also highlights the topics that are newly emerging or hotly debated, thus can provide readers a useful guidance on further studies of their interested topics.
We investigate the relaxation of braided magnetic loops in order to find out how the type of braiding via footpoint motions affects resultant heating of the loop. Two magnetic loops, braided in different ways, are used as initial conditions in resist ive MHD simulations and their subsequent evolution is studied. The fields both undergo a resistive relaxation in which current sheets form and fragment and the system evolves towards a state of lower energy. In one case this relaxation is very efficient with current sheets filling the volume and homogeneous heating of the loop occurring. In the other case fewer current sheets develop, less magnetic energy is released in the process and a patchy heating of the loop results. The two cases, although very similar in their setup, can be distinguished by the mixing properties of the photospheric driver. The mixing can be measured by the topological entropy of the plasma flow, an observable quantity.
Observations of reconnection jets in the solar corona are emerging as a possible diagnostic to study highly elusive coronal heating. Such nanojets can be observed in coronal loops and they have been linked to nanoflares. However, while models success fully describe the bilateral post-reconnection magnetic slingshot effect that leads to the jets, observations reveal that nanojets are unidirectional, or highly asymmetric, with only the jet travelling inward with respect to the coronal loops curvature being clearly observed. The aim of this work is to address the role of the curvature of the coronal loop in asymmetric reconnection jets. In order to do so, we first use a simplified analytical model where we estimate the post-reconnection tension forces based on the local intersection angle between the pre-reconnection magnetic field lines and on their post-reconnection retracting length towards new equilibria. Second, we use a simplified numerical magnetohydrodynamic (MHD) model to study how two opposite propagating jets evolve in curved magnetic field lines. Our analytical model demonstrates that in the post-reconnection reorganised magnetic field, the inward directed magnetic tension is inherently stronger (up to 3 orders of magnitude) than the outward directed one and that, with a large enough retracting length, a regime exists where the outward directed tension disappears, leading to no outward jet at large, observable scales. Our MHD numerical model provides support for these results proving also that in the following time evolution the inward jets are consistently more energetic. The degree of asymmetry is also found to increase for small-angle reconnection and for more localised reconnection regions. This work shows that the curvature of the coronal loops plays a role in the asymmetry of the reconnection jets and inward directed jets are more likely to occur and more energetic.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا