ترغب بنشر مسار تعليمي؟ اضغط هنا

The Stellar and Gaseous Contents of the Orion Dwarf Galaxy

135   0   0.0 ( 0 )
 نشر من قبل John M. Cannon
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present new KPNO 0.9-m optical and VLA HI spectral line observations of the Orion dwarf galaxy. This nearby (D ~ 5.4 Mpc), intermediate-mass (M_dyn = 1.1x10^10 Solar masses) dwarf displays a wealth of structure in its neutral ISM, including three prominent hole/depression features in the inner HI disk. We explore the rich gas kinematics, where solid-body rotation dominates and the rotation curve is flat out to the observed edge of the HI disk (~6.8 kpc). The Orion dwarf contains a substantial fraction of dark matter throughout its disk: comparing the 4.7x10^8 Solar masses of detected neutral gas with estimates of the stellar mass from optical and near-infrared imaging (3.7x10^8 Solar masses) implies a mass-to-light ratio of ~13. New H alpha observations show only modest-strength current star formation (~0.04 Solar masses per year); this star formation rate is consistent with our 1.4 GHz radio continuum non-detection.



قيم البحث

اقرأ أيضاً

214 - Greg Stinson 2009
Stellar population studies show that low mass galaxies in all environments exhibit stellar halos that are older and more spherically distributed than the main body of the galaxy. In some cases, there is a significant intermediate age component that e xtends beyond the young disk. We examine a suite of Smoothed Particle Hydrodynamic (SPH) simulations and find that elevated early star formation activity combined with supernova feedback can produce an extended stellar distribution that resembles these halos for model galaxies ranging from $v_{200}$ = 15 km s$^{-1}$ to 35 km s$^{-1}$, without the need for accretion of subhalos.
We present a moderately-deep JK photometry for three selected areas of the dwarf irregular galaxy IC1613. The color-magnitude diagrams contain a mixture of red supergiants, asymptotic giant branch stars and the brightest red giant stars. The red supe rgiants are massive (20 - 25 M_odot) and young -with ages between 8 and 25 Myr. The most important result is the evidence of the decreasing density of the intermediate age AGB population in the vicinity of the HII regions in the galaxy. We also find age differences between AGB stars in the main body of the galaxy and those near the HII regions in the North-East. The former span a range in ages between 1 and 10 Gyr, while the latter are younger than 1 Gyr. Using the period-luminosity relation derived by Madore & Freedman (1991) and JK magnitudes of the Cepheid variable V20, we calculated (m-M)_K = 24.37+-0.2. The recently discovered Nova (King et al. 1999) was identified in Field III. Its presence of our images and its brightness questioned its classification as a nova.
Chameleon theories of gravity predict that the gaseous component of isolated dwarf galaxies rotates with a faster velocity than the stellar component. In this paper, we exploit this effect to obtain new constraints on the model parameters using the m easured rotation curves of six low surface brightness galaxies. For $f(R)$ theories, we rule out values of $f_{R0}>10^{-6}$. For more general theories, we find that the constraints from Cepheid variable stars are currently more competitive than the bounds we obtain here but we are able to rule out self-screening parameters $chi_c>10^{-6}$ for fifth-force strengths (coupling of the scalar to matter) as low as $0.05$ the Newtonian force. This region of parameter space has hitherto been inaccessible to astrophysical probes. We discuss the future prospects for improving these bounds.
How the Milky Way has accumulated its mass over the Hubble time, whether significant amounts of gas and stars were accreted from satellite galaxies, or whether the Milky Way has experienced an initial gas assembly and then evolved more-or-less in iso lation is one of the burning questions in modern astronomy, because it has consequences for our understanding of galaxy formation in the cosmological context. Here we present the evolutionary model of a Milky Way-type satellite system zoomed into a cosmological large-scale simulation. Embedded into Dark Matter halos and allowing for baryonic processes these chemo-dynamical simulations aim at studying the gas and stellar loss from the satellites to feed the Milky Way halo and the stellar chemical abundances in the halo and the satellite galaxies.
227 - G. Bertin , N. C. Amorisco 2009
Context: Several spiral galaxies, as beautifully exhibited by the case of NGC 6946, display a prominent large-scale spiral structure in their gaseous outer disk. Such structure is often thought to pose a dynamical puzzle, because grand-design spiral structure is traditionally interpreted as the result of density waves carried mostly in the stellar disk. Aims. Here we argue that the outer spiral arms in the cold gas outside the bright optical disk actually have a natural interpretation as the manifestation of the mechanism that excites grand-design spiral structure in the main, star-dominated body of the disk: the excitation is driven by angular momentum transport to the outer regions, through trailing density waves outside the corotation circle that can penetrate beyond the Outer Lindblad Resonance in the gaseous component of the disk. Methods: Because of conservation of the density wave action, these outgoing waves are likely to become more prominent in the outer disk and eventually reach non-linear amplitudes. To calculate the desired amplitude profiles, we make use of the theory of dispersive waves. Results: If the conditions beyond the optical radius allow for an approximate treatment in terms of a linear theory, we show that fitting the observed amplitude profiles leads to a quantitative test on the density of the disk material and thus on the dark matter distribution in the outer parts of the galaxy. Conclusions: This study is thus of interest to the general problem of the disk-halo decomposition of rotation curves.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا