ﻻ يوجد ملخص باللغة العربية
We present a moderately-deep JK photometry for three selected areas of the dwarf irregular galaxy IC1613. The color-magnitude diagrams contain a mixture of red supergiants, asymptotic giant branch stars and the brightest red giant stars. The red supergiants are massive (20 - 25 M_odot) and young -with ages between 8 and 25 Myr. The most important result is the evidence of the decreasing density of the intermediate age AGB population in the vicinity of the HII regions in the galaxy. We also find age differences between AGB stars in the main body of the galaxy and those near the HII regions in the North-East. The former span a range in ages between 1 and 10 Gyr, while the latter are younger than 1 Gyr. Using the period-luminosity relation derived by Madore & Freedman (1991) and JK magnitudes of the Cepheid variable V20, we calculated (m-M)_K = 24.37+-0.2. The recently discovered Nova (King et al. 1999) was identified in Field III. Its presence of our images and its brightness questioned its classification as a nova.
Increasing the statistics of evolved massive stars in the Local Group enables investigating their evolution at different metallicities. During the late stages of stellar evolution, the physics of some phenomena, such as episodic and systematic mass l
To test the existence of a possible radial gradient in oxygen abundances within the Local Group dwarf irregular galaxy NGC 6822, we have obtained optical spectra of 19 nebulae with the EFOSC2 spectrograph on the 3.6-m telescope at ESO La Silla. The e
We present new KPNO 0.9-m optical and VLA HI spectral line observations of the Orion dwarf galaxy. This nearby (D ~ 5.4 Mpc), intermediate-mass (M_dyn = 1.1x10^10 Solar masses) dwarf displays a wealth of structure in its neutral ISM, including three
We present 12CO J = 1-0 and J = 2-1 observations of the low metallicity (12 + log(O/H) = 7.74) Local Group dwarf irregular galaxy WLM made with the 15 m SEST and 14 m FCRAO telescopes. Despite the presence a number of HII regions, we find no CO emiss
We present deep Hubble Space Telescope single-star photometry of Leo A in B, V, and I. Our new field of view is offset from the centrally located field observed by Tolstoy et al. (1998) in order to expose the halo population of this galaxy. We report