ترغب بنشر مسار تعليمي؟ اضغط هنا

Students t-Distribution Based Option Sensitivities: Greeks for the Gosset Formulae

41   0   0.0 ( 0 )
 نشر من قبل Rachid Ouyed
 تاريخ النشر 2010
  مجال البحث مالية
والبحث باللغة English




اسأل ChatGPT حول البحث

European options can be priced when returns follow a Students t-distribution, provided that the asset is capped in value or the distribution is truncated. We call pricing of options using a log Students t-distribution a Gosset approach, in honour of W.S. Gosset. In this paper, we compare the greeks for Gosset and Black-Scholes formulae and we discuss implementation. The t-distribution requires a shape parameter u to match the fat tails of the observed returns. For large u, the Gosset and Black-Scholes formulae are equivalent. The Gosset formulae removes the requirement that the volatility be known, and in this sense can be viewed as an extension of the Black-Scholes formula.

قيم البحث

اقرأ أيضاً

73 - Miquel Montero 2008
In this paper we will develop a methodology for obtaining pricing expressions for financial instruments whose underlying asset can be described through a simple continuous-time random walk (CTRW) market model. Our approach is very natural to the issu e because it is based in the use of renewal equations, and therefore it enhances the potential use of CTRW techniques in finance. We solve these equations for typical contract specifications, in a particular but exemplifying case. We also show how a formal general solution can be found for more exotic derivatives, and we compare prices for alternative models of the underlying. Finally, we recover the celebrated results for the Wiener process under certain limits.
A nonlinear wave alternative for the standard Black-Scholes option-pricing model is presented. The adaptive-wave model, representing controlled Brownian behavior of financial markets, is formally defined by adaptive nonlinear Schrodinger (NLS) equati ons, defining the option-pricing wave function in terms of the stock price and time. The model includes two parameters: volatility (playing the role of dispersion frequency coefficient), which can be either fixed or stochastic, and adaptive market potential that depends on the interest rate. The wave function represents quantum probability amplitude, whose absolute square is probability density function. Four types of analytical solutions of the NLS equation are provided in terms of Jacobi elliptic functions, all starting from de Broglies plane-wave packet associated with the free quantum-mechanical particle. The best agreement with the Black-Scholes model shows the adaptive shock-wave NLS-solution, which can be efficiently combined with adaptive solitary-wave NLS-solution. Adjustable weights of the adaptive market-heat potential are estimated using either unsupervised Hebbian learning, or supervised Levenberg-Marquardt algorithm. In the case of stochastic volatility, it is itself represented by the wave function, so we come to the so-called Manakov system of two coupled NLS equations (that admits closed-form solutions), with the common adaptive market potential, which defines a bidirectional spatio-temporal associative memory. Keywords: Black-Scholes option pricing, adaptive nonlinear Schrodinger equation, market heat potential, controlled stochastic volatility, adaptive Manakov system, controlled Brownian behavior
A stochastic model for pure-jump diffusion (the compound renewal process) can be used as a zero-order approximation and as a phenomenological description of tick-by-tick price fluctuations. This leads to an exact and explicit general formula for the martingale price of a European call option. A complete derivation of this result is presented by means of elementary probabilistic tools.
107 - Young Shin Kim 2018
In this paper, we will discuss an approximation of the characteristic function of the first passage time for a Levy process using the martingale approach. The characteristic function of the first passage time of the tempered stable process is provide d explicitly or by an indirect numerical method. This will be applied to the perpetual American option pricing and the barrier option pricing. Numerical illustrations are provided for the calibrated parameters using the market call and put prices.
114 - Fabien Le Floch 2020
This paper presents simple formulae for the local variance gamma model of Carr and Nadtochiy, extended with a piecewise-linear local variance function. The new formulae allow to calibrate the model efficiently to market option quotes. On a small set of quotes, exact calibration is achieved under one millisecond. This effectively results in an arbitrage-free interpolation of class $C^2$. The paper proposes a good regularization when the quotes are noisy. Finally, it puts in evidence an issue of the model at-the-money, which is also present in the related one-step finite difference technique of Andreasen and Huge, and gives two solutions for it.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا