ﻻ يوجد ملخص باللغة العربية
This paper presents simple formulae for the local variance gamma model of Carr and Nadtochiy, extended with a piecewise-linear local variance function. The new formulae allow to calibrate the model efficiently to market option quotes. On a small set of quotes, exact calibration is achieved under one millisecond. This effectively results in an arbitrage-free interpolation of class $C^2$. The paper proposes a good regularization when the quotes are noisy. Finally, it puts in evidence an issue of the model at-the-money, which is also present in the related one-step finite difference technique of Andreasen and Huge, and gives two solutions for it.
Option price data are used as inputs for model calibration, risk-neutral density estimation and many other financial applications. The presence of arbitrage in option price data can lead to poor performance or even failure of these tasks, making pre-
In this paper, we give a numerical method for pricing long maturity, path dependent options by using the Markov property for each underlying asset. This enables us to approximate a path dependent option by using some kinds of plain vanillas. We give
A nonlinear wave alternative for the standard Black-Scholes option-pricing model is presented. The adaptive-wave model, representing controlled Brownian behavior of financial markets, is formally defined by adaptive nonlinear Schrodinger (NLS) equati
Adaptive wave model for financial option pricing is proposed, as a high-complexity alternative to the standard Black--Scholes model. The new option-pricing model, representing a controlled Brownian motion, includes two wave-type approaches: nonlinear
Recently, a novel adaptive wave model for financial option pricing has been proposed in the form of adaptive nonlinear Schr{o}dinger (NLS) equation [Ivancevic a], as a high-complexity alternative to the linear Black-Scholes-Merton model [Black-Schole