ﻻ يوجد ملخص باللغة العربية
We review developments made since 1959 in the search for a closed form for the susceptibility of the Ising model. The expressions for the form factors in terms of the nome $q$ and the modulus $k$ are compared and contrasted. The $lambda$ generalized correlations $C(M,N;lambda)$ are defined and explicitly computed in terms of theta functions for $M=N=0,1$.
We study the full susceptibility of the Ising model modulo powers of primes. We find exact functional equations for the full susceptibility modulo these primes. Revisiting some lesser-known results on discrete finite automata, we show that these resu
We use the recently derived form factor expansions of the diagonal two-point correlation function of the square Ising model to study the susceptibility for a magnetic field applied only to one diagonal of the lattice, for the isotropic Ising model.
We give the exact expressions of the partial susceptibilities $chi^{(3)}_d$ and $chi^{(4)}_d$ for the diagonal susceptibility of the Ising model in terms of modular forms and Calabi-Yau ODEs, and more specifically, $_3F_2([1/3,2/3,3/2],, [1,1];, z)
We calculate very long low- and high-temperature series for the susceptibility $chi$ of the square lattice Ising model as well as very long series for the five-particle contribution $chi^{(5)}$ and six-particle contribution $chi^{(6)}$. These calcula
We study the class of non-holonomic power series with integer coefficients that reduce, modulo primes, or powers of primes, to algebraic functions. In particular we try to determine whether the susceptibility of the square-lattice Ising model belongs