ترغب بنشر مسار تعليمي؟ اضغط هنا

Automata and the susceptibility of the square lattice Ising model modulo powers of primes

198   0   0.0 ( 0 )
 نشر من قبل J. M. Maillard
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the full susceptibility of the Ising model modulo powers of primes. We find exact functional equations for the full susceptibility modulo these primes. Revisiting some lesser-known results on discrete finite automata, we show that these results can be seen as a consequence of the fact that, modulo 2^r, one cannot distinguish the full susceptibility from some simple diagonals of rational functions which reduce to algebraic functions modulo 2^r, and, consequently, satisfy exact functional equations modulo 2^r. We sketch a possible physical interpretation of these functional equations modulo 2^r as reductions of a master functional equation corresponding to infinite order symmetries such as the isogenies of elliptic curves. One relevant example is the Landen transformation which can be seen as an exact generator of the Ising model renormalization group. We underline the importance of studying a new class of functions corresponding to ratios of diagonals of rational functions: they reduce to algebraic functions modulo powers of primes and they may have solutions with natural boundaries.



قيم البحث

اقرأ أيضاً

We calculate very long low- and high-temperature series for the susceptibility $chi$ of the square lattice Ising model as well as very long series for the five-particle contribution $chi^{(5)}$ and six-particle contribution $chi^{(6)}$. These calcula tions have been made possible by the use of highly optimized polynomial time modular algorithms and a total of more than 150000 CPU hours on computer clusters. For $chi^{(5)}$ 10000 terms of the series are calculated {it modulo} a single prime, and have been used to find the linear ODE satisfied by $chi^{(5)}$ {it modulo} a prime. A diff-Pade analysis of 2000 terms series for $chi^{(5)}$ and $chi^{(6)}$ confirms to a very high degree of confidence previous conjectures about the location and strength of the singularities of the $n$-particle components of the susceptibility, up to a small set of ``additional singularities. We find the presence of singularities at $w=1/2$ for the linear ODE of $chi^{(5)}$, and $w^2= 1/8$ for the ODE of $chi^{(6)}$, which are {it not} singularities of the ``physical $chi^{(5)}$ and $chi^{(6)},$ that is to say the series-solutions of the ODEs which are analytic at $w =0$. Furthermore, analysis of the long series for $chi^{(5)}$ (and $chi^{(6)}$) combined with the corresponding long series for the full susceptibility $chi$ yields previously conjectured singularities in some $chi^{(n)}$, $n ge 7$. We also present a mechanism of resummation of the logarithmic singularities of the $chi^{(n)}$ leading to the known power-law critical behaviour occurring in the full $chi$, and perform a power spectrum analysis giving strong arguments in favor of the existence of a natural boundary for the full susceptibility $chi$.
We study the class of non-holonomic power series with integer coefficients that reduce, modulo primes, or powers of primes, to algebraic functions. In particular we try to determine whether the susceptibility of the square-lattice Ising model belongs to this class, and more broadly whether the susceptibility is a solution of a differentially algebraic equation. Initial results on Tuttes non-linear ordinary differential equation (ODE) and other simple quadratic non-linear ODEs suggest that a large set of differentially algebraic power series solutions with integer coefficients might reduce to algebraic functions modulo primes, or powers of primes. Here we give several examples of series with integer coefficients and non-zero radius of convergence that reduce to algebraic functions modulo (almost) every prime (or power of a prime). These examples satisfy differentially algebraic equations with the encoding polynomial occasionally possessing quite high degree (and thus difficult to identify even with long series). Additionally, we have extended both the high- and low-temperature Ising square-lattice susceptibility series to 5043 coefficients. We find that even this long series is insufficient to determine whether it reduces to algebraic functions modulo $3$, $5$, etc. This negative result is in contrast to the comparatively easy confirmation that the corresponding series reduce to algebraic functions modulo powers of $2$.
275 - B.M. McCoy , M. Assis , S. Boukraa 2010
We review developments made since 1959 in the search for a closed form for the susceptibility of the Ising model. The expressions for the form factors in terms of the nome $q$ and the modulus $k$ are compared and contrasted. The $lambda$ generalized correlations $C(M,N;lambda)$ are defined and explicitly computed in terms of theta functions for $M=N=0,1$.
We consider the Fuchsian linear differential equation obtained (modulo a prime) for $tilde{chi}^{(5)}$, the five-particle contribution to the susceptibility of the square lattice Ising model. We show that one can understand the factorization of the c orresponding linear differential operator from calculations using just a single prime. A particular linear combination of $tilde{chi}^{(1)}$ and $tilde{chi}^{(3)}$ can be removed from $tilde{chi}^{(5)}$ and the resulting series is annihilated by a high order globally nilpotent linear ODE. The corresponding (minimal order) linear differential operator, of order 29, splits into factors of small orders. A fifth order linear differential operator occurs as the left-most factor of the depleted differential operator and it is shown to be equivalent to the symmetric fourth power of $L_E$, the linear differential operator corresponding to the elliptic integral $E$. This result generalizes what we have found for the lower order terms $tilde{chi}^{(3)}$ and $tilde{chi}^{(4)}$. We conjecture that a linear differential operator equivalent to a symmetric $(n-1)$-th power of $L_E$ occurs as a left-most factor in the minimal order linear differential operators for all $tilde{chi}^{(n)}$s.
We recall various multiple integrals related to the isotropic square Ising model, and corresponding, respectively, to the n-particle contributions of the magnetic susceptibility, to the (lattice) form factors, to the two-point correlation functions a nd to their lambda-extensions. These integrals are holonomic and even G-functions: they satisfy Fuchsian linear differential equations with polynomial coefficients and have some arithmetic properties. We recall the explicit forms, found in previous work, of these Fuchsian equations. These differential operators are very selected Fuchsian linear differential operators, and their remarkable properties have a deep geometrical origin: they are all globally nilpotent, or, sometimes, even have zero p-curvature. Focusing on the factorised parts of all these operators, we find out that the global nilpotence of the factors corresponds to a set of selected structures of algebraic geometry: elliptic curves, modular curves, and even a remarkable weight-1 modular form emerging in the three-particle contribution $ chi^{(3)}$ of the magnetic susceptibility of the square Ising model. In the case where we do not have G-functions, but Hamburger functions (one irregular singularity at 0 or $ infty$) that correspond to the confluence of singularities in the scaling limit, the p-curvature is also found to verify new structures associated with simple deformations of the nilpotent property.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا