ترغب بنشر مسار تعليمي؟ اضغط هنا

ATLASGAL --- properties of compact HII regions and their natal clumps

100   0   0.0 ( 0 )
 نشر من قبل James Urquhart
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف J. S. Urquhart




اسأل ChatGPT حول البحث

No English abstract

قيم البحث

اقرأ أيضاً

66 - Ning Hu , Enci Wang , Zesen Lin 2018
By using the Hectospec 6.5 m Multiple Mirror Telescope (MMT) and the 2.16 m telescope of National Astronomical Observatories, Chinese Academy of Sciences (NAOC), we obtained 188 high signal-to-noise ratio (S/N) spectra of HII regions in the nearby ga laxy M101, which are the largest spectroscopic sample of HII regions for this galaxy so far. These spectra cover a wide range of regions on M101, which enables us to analyze two dimensional distributions of its physical properties. The physical parameters are derived from emission lines or stellar continuum, including stellar population age, electron temperature, oxygen abundance and etc. The oxygen abundances are derived using two empirical methods based on O3N2 and R$_{23}$ indicators, as well as the direct Te method when OIII$lambda4363$ is available. By applying the harmonic decomposition analysis to the velocity field, we obtained line-of-sight rotation velocity of 71 km s$^{-1}$ and a position angle of 36 degree. The stellar age profile shows an old stellar population in galaxy center and a relative young stellar population in outer regions, suggesting an old bulge and a young disk. Oxygen abundance profile exhibits a clear break at $sim$18 kpc, with a gradient of $-$0.0364 dex kpc$^{-1}$ in the inner region and $-$0.00686 dex kpc$^{-1}$ in the outer region. Our results agree with the inside-out disk growth scenario of M101.
Dust properties are very likely affected by the environment in which dust grains evolve. For instance, some analyses of cold clumps (7 K- 17 K) indicate that the aggregation process is favored in dense environments. However, studying warm (30 K-40 K) dust emission at long wavelength ($lambda$$>$300 $mu$m) has been limited because it is difficult to combine far infared-to-millimeter (FIR-to-mm) spectral coverage and high angular resolution for observations of warm dust grains. Using Herschel data from 70 to 500 $mu$m, which are part of the Herschel infrared Galactic (Hi-GAL) survey combined with 1.1 mm data from the Bolocam Galactic Plane Survey (BGPS), we compared emission in two types of environments: ultra-compact HII (UCHII) regions, and cold molecular clumps (denoted as cold clumps). With this comparison we tested dust emission models in the FIR-to-mm domain that reproduce emission in the diffuse medium, in these two environments (UCHII regions and cold clumps). We also investigated their ability to predict the dust emission in our Galaxy. We determined the emission spectra in twelve UCHII regions and twelve cold clumps, and derived the dust temperature (T) using the recent two-level system (TLS) model with three sets of parameters and the so-called T-$beta$ (temperature-dust emissvity index) phenomenological models, with $beta$ set to 1.5, 2 and 2.5. We tested the applicability of the TLS model in warm regions for the first time. This analysis indicates distinct trends in the dust emission between cold and warm environments that are visible through changes in the dust emissivity index. However, with the use of standard parameters, the TLS model is able to reproduce the spectral behavior observed in cold and warm regions, from the change of the dust temperature alone, whereas a T-$beta$ model requires $beta$ to be known.
93 - Tara Murphy 2010
We present radio and infrared observations of 4 hyper-compact HII regions and 4 ultra-compact HII regions in the southern Galactic plane. These objects were selected from a blind survey for UCHII regions using data from two new radio surveys of the s outhern sky; the Australia Telescope 20 GHz survey (AT20G) and the 2nd epoch Molonglo Galactic Plane Survey (MGPS-2) at 843 MHz. To our knowledge, this is the first blind radio survey for hyper- and ultra-compact HII regions. We have followed up these sources with the Australia Telescope Compact Array to obtain H70-alpha recombination line measurements, higher resolution images at 20 GHz and flux density measurements at 30, 40 and 95 GHz. From this we have determined sizes and recombination line temperatures as well as modeling the spectral energy distributions to determine emission measures. We have classified the sources as hyper-compact or ultra-compact on the basis of their physical parameters, in comparison with benchmark parameters from the literature. Several of these bright, compact sources are potential calibrators for the Low Frequency Instrument (30-70 GHz) and the 100-GHz channel of the High Frequency Instrument of the Planck satellite mission. They may also be useful as calibrators for the Australia Telescope Compact Array, which lacks good non-variable primary flux calibrators at higher frequencies and in the Galactic plane region. Our spectral energy distributions allow the flux densities within the Planck bands to be determined, although our high frequency observations show that several sources have excess emission at 95 GHz (3 mm) that can not be explained by current models.
We present a determination of the luminosity functions of massive young stellar objects (MYSOs) and compact (C)HII regions within the Milky Way Galaxy using the large, well-selected sample of these sources identified by the Red MSX Source (RMS) surve y. The MYSO luminosity function decreases monotonically such that there are few with $Lgtrsim 10^{5}$Lsol, whilst the CHII regions are detected up to ~10$^{6}Lsol. The lifetimes of these phases are also calculated as a function of luminosity by comparison with the luminosity function for local main-sequence OB stars. These indicate that the MYSO phase has a duration ranging from 4x10$^{5}$ yrs for 10$^{4}$Lsol to ~7x10$^{4}$ yrs at 10$^{5}$Lsol, whilst the CHII region phase lasts of order 3x10$^{5}$ yrs or ~3-10% of the exciting stars main-sequence lifetime. MYSOs between 10$^{4} Lsol and ~10$^{5}$ Lsol are massive but do not display the radio continuum or near-IR HI{} recombination line emission indicative of an HII region, consistent with being swollen due to high ongoing or recent accretion rates. Above ~10$^{5}$ Lsol the MYSO phase lifetime becomes comparable to the main-sequence Kelvin-Helmholtz timescale, at which point the central star can rapidly contract onto the main-sequence even if still accreting, and ionise a CHII region, thus explaining why few highly luminous MYSOs are observed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا