ﻻ يوجد ملخص باللغة العربية
This paper studies directional dynamics in cellular automata, a formalism previously introduced by the third author. The central idea is to study the dynamical behaviour of a cellular automaton through the conjoint action of its global rule (temporal action) and the shift map (spacial action): qualitative behaviours inherited from topological dynamics (equicontinuity, sensitivity, expansivity) are thus considered along arbitrary curves in space-time. The main contributions of the paper concern equicontinuous dynamics which can be connected to the notion of consequences of a word. We show that there is a cellular automaton with an equicontinuous dynamics along a parabola, but which is sensitive along any linear direction. We also show that real numbers that occur as the slope of a limit linear direction with equicontinuous dynamics in some cellular automaton are exactly the computably enumerable numbers.
The notions of universality and completeness are central in the theories of computation and computational complexity. However, proving lower bounds and necessary conditions remains hard in most of the cases. In this article, we introduce necessary co
In this paper, we analyze the algebraic structure of some null boundary as well as some periodic boundary 2-D Cellular Automata (CA) rules by introducing a new matrix multiplication operation using only AND, OR instead of most commonly used AND, EX-O
This paper studies three classes of cellular automata from a computational point of view: freezing cellular automata where the state of a cell can only decrease according to some order on states, cellular automata where each cell only makes a bounded
This paper presents a classification of Cellular Automata rules based on its properties at the nth iteration. Elaborate computer program has been designed to get the nth iteration for arbitrary 1-D or 2-D CA rules. Studies indicate that the figures a
We say that a finite asynchronous cellular automaton (or more generally, any sequential dynamical system) is pi-independent if its set of periodic points are independent of the order that the local functions are applied. In this case, the local funct