ترغب بنشر مسار تعليمي؟ اضغط هنا

Communication Complexity and Intrinsic Universality in Cellular Automata

119   0   0.0 ( 0 )
 نشر من قبل Guillaume Theyssier
 تاريخ النشر 2009
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The notions of universality and completeness are central in the theories of computation and computational complexity. However, proving lower bounds and necessary conditions remains hard in most of the cases. In this article, we introduce necessary conditions for a cellular automaton to be universal, according to a precise notion of simulation, related both to the dynamics of cellular automata and to their computational power. This notion of simulation relies on simple operations of space-time rescaling and it is intrinsic to the model of cellular automata. Intrinsinc universality, the derived notion, is stronger than Turing universality, but more uniform, and easier to define and study. Our approach builds upon the notion of communication complexity, which was primarily designed to study parallel programs, and thus is, as we show in this article, particulary well suited to the study of cellular automata: it allowed to show, by studying natural problems on the dynamics of cellular automata, that several classes of cellular automata, as well as many natural (elementary) examples, could not be intrinsically universal.



قيم البحث

اقرأ أيضاً

304 - Florent Becker 2018
Cellular Automata have been used since their introduction as a discrete tool of modelization. In many of the physical processes one may modelize thus (such as bootstrap percolation, forest fire or epidemic propagation models, life without death, etc) , each local change is irreversible. The class of freezing Cellular Automata (FCA) captures this feature. In a freezing cellular automaton the states are ordered and the cells can only decrease their state according to this freezing-order. We investigate the dynamics of such systems through the questions of simulation and universality in this class: is there a Freezing Cellular Automaton (FCA) that is able to simulate any Freezing Cellular Automata, i.e. an intrinsically universal FCA? We show that the answer to that question is sensitive to both the number of changes cells are allowed to make, and geometric features of the space. In dimension 1, there is no universal FCA. In dimension 2, if either the number of changes is at least 2, or the neighborhood is Moore, then there are universal FCA. On the other hand, there is no universal FCA with one change and Von Neumann neighborhood. We also show that monotonicity of the local rule with respect to the freezing-order (a common feature of bootstrap percolation) is also an obstacle to universality.
197 - Nicolas Ollinger 2019
This paper studies three classes of cellular automata from a computational point of view: freezing cellular automata where the state of a cell can only decrease according to some order on states, cellular automata where each cell only makes a bounded number of state changes in any orbit, and finally cellular automata where each orbit converges to some fixed point. Many examples studied in the literature fit into these definitions, in particular the works on cristal growth started by S. Ulam in the 60s. The central question addressed here is how the computational power and computational hardness of basic properties is affected by the constraints of convergence, bounded number of change, or local decreasing of states in each cell. By studying various benchmark problems (short-term prediction, long term reachability, limits) and considering various complexity measures and scales (LOGSPACE vs. PTIME, communication complexity, Turing computability and arithmetical hierarchy) we give a rich and nuanced answer: the overall computational complexity of such cellular automata depends on the class considered (among the three above), the dimension, and the precise problem studied. In particular, we show that all settings can achieve universality in the sense of Blondel-Delvenne-Kr{u}rka, although short term predictability varies from NLOGSPACE to P-complete. Besides, the computability of limit configurations starting from computable initial configurations separates bounded-change from convergent cellular automata in dimension 1, but also dimension 1 versus higher dimensions for freezing cellular automata. Another surprising dimension-sensitive result obtained is that nilpotency becomes decidable in dimension 1 for all the three classes, while it stays undecidable even for freezing cellular automata in higher dimension.
393 - Martin Delacourt 2010
This paper studies directional dynamics in cellular automata, a formalism previously introduced by the third author. The central idea is to study the dynamical behaviour of a cellular automaton through the conjoint action of its global rule (temporal action) and the shift map (spacial action): qualitative behaviours inherited from topological dynamics (equicontinuity, sensitivity, expansivity) are thus considered along arbitrary curves in space-time. The main contributions of the paper concern equicontinuous dynamics which can be connected to the notion of consequences of a word. We show that there is a cellular automaton with an equicontinuous dynamics along a parabola, but which is sensitive along any linear direction. We also show that real numbers that occur as the slope of a limit linear direction with equicontinuous dynamics in some cellular automaton are exactly the computably enumerable numbers.
In this paper, we analyze the algebraic structure of some null boundary as well as some periodic boundary 2-D Cellular Automata (CA) rules by introducing a new matrix multiplication operation using only AND, OR instead of most commonly used AND, EX-O R. This class includes any CA whose rule, when written as an algebra, is a finite Abelean cyclic group in case of periodic boundary and a finite commutative cyclic monoid in case of null boundary CA respectively. The concept of 1-D Multiple Attractor Cellular Automata (MACA) is extended to 2-D. Using the family of 2-D MACA and the finite Abelian cyclic group, an efficient encompression algorithm is proposed for binary images.
137 - Pablo Arrighi 2012
The paper proposes a simple formalism for dealing with deterministic, non-deterministic and stochastic cellular automata in a unifying and composable manner. Armed with this formalism, we extend the notion of intrinsic simulation between deterministi c cellular automata, to the non-deterministic and stochastic settings. We then provide explicit tools to prove or disprove the existence of such a simulation between two stochastic cellular automata, even though the intrinsic simulation relation is shown to be undecidable in dimension two and higher. The key result behind this is the caracterization of equality of stochastic global maps by the existence of a coupling between the random sources. We then prove that there is a universal non-deterministic cellular automaton, but no universal stochastic cellular automaton. Yet we provide stochastic cellular automata achieving optimal partial universality.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا