ترغب بنشر مسار تعليمي؟ اضغط هنا

Molecular Dynamics Simulation of Macromolecules Using Graphics Processing Unit

115   0   0.0 ( 0 )
 نشر من قبل Ying Ren
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Molecular dynamics (MD) simulation is a powerful computational tool to study the behavior of macromolecular systems. But many simulations of this field are limited in spatial or temporal scale by the available computational resource. In recent years, graphics processing unit (GPU) provides unprecedented computational power for scientific applications. Many MD algorithms suit with the multithread nature of GPU. In this paper, MD algorithms for macromolecular systems that run entirely on GPU are presented. Compared to the MD simulation with free software GROMACS on a single CPU core, our codes achieve about 10 times speed-up on a single GPU. For validation, we have performed MD simulations of polymer crystallization on GPU, and the results observed perfectly agree with computations on CPU. Therefore, our single GPU codes have already provided an inexpensive alternative for macromolecular simulations on traditional CPU clusters and they can also be used as a basis to develop parallel GPU programs to further speedup the computations.



قيم البحث

اقرأ أيضاً

The Graphics Processing Unit (GPU) is a powerful tool for parallel computing. In the past years the performance and capabilities of GPUs have increased, and the Compute Unified Device Architecture (CUDA) - a parallel computing architecture - has been developed by NVIDIA to utilize this performance in general purpose computations. Here we show for the first time a possible application of GPU for environmental studies serving as a basement for decision making strategies. A stochastic Lagrangian particle model has been developed on CUDA to estimate the transport and the transformation of the radionuclides from a single point source during an accidental release. Our results show that parallel implementation achieves typical acceleration values in the order of 80-120 times compared to CPU using a single-threaded implementation on a 2.33 GHz desktop computer. Only very small differences have been found between the results obtained from GPU and CPU simulations, which are comparable with the effect of stochastic transport phenomena in atmosphere. The relatively high speedup with no additional costs to maintain this parallel architecture could result in a wide usage of GPU for diversified environmental applications in the near future.
Glass transition temperature ($T_{text{g}}$) plays an important role in controlling the mechanical and thermal properties of a polymer. Polyimides are an important category of polymers with wide applications because of their superior heat resistance and mechanical strength. The capability of predicting $T_{text{g}}$ for a polyimide $a~priori$ is therefore highly desirable in order to expedite the design and discovery of new polyimide polymers with targeted properties and applications. Here we explore three different approaches to either compute $T_{text{g}}$ for a polyimide via all-atom molecular dynamics (MD) simulations or predict $T_{text{g}}$ via a mathematical model generated by using machine-learning algorithms to analyze existing data collected from literature. Our simulations reveal that $T_{text{g}}$ can be determined from examining the diffusion coefficient of simple gas molecules in a polyimide as a function of temperature and the results are comparable to those derived from data on polymer density versus temperature and actually closer to the available experimental data. Furthermore, the predictive model of $T_{text{g}}$ derived with machine-learning algorithms can be used to estimate $T_{text{g}}$ successfully within an uncertainty of about 20 degrees, even for polyimides yet to be synthesized experimentally.
The predominance of Kohn-Sham density functional theory (KS-DFT) for the theoretical treatment of large experimentally relevant systems in molecular chemistry and materials science relies primarily on the existence of efficient software implementatio ns which are capable of leveraging the latest advances in modern high performance computing (HPC). With recent trends in HPC leading towards in increasing reliance on heterogeneous accelerator based architectures such as graphics processing units (GPU), existing code bases must embrace these architectural advances to maintain the high-levels of performance which have come to be expected for these methods. In this work, we purpose a three-level parallelism scheme for the distributed numerical integration of the exchange-correlation (XC) potential in the Gaussian basis set discretization of the Kohn-Sham equations on large computing clusters consisting of multiple GPUs per compute node. In addition, we purpose and demonstrate the efficacy of the use of batched kernels, including batched level-3 BLAS operations, in achieving high-levels of performance on the GPU. We demonstrate the performance and scalability of the implementation of the purposed method in the NWChemEx software package by comparing to the existing scalable CPU XC integration in NWChem.
241 - H. W. Zhang , J. Zhu , Z. W. Ma 2018
In this paper, the OpenACC heterogeneous parallel programming model is successfully applied to modification and acceleration of the three-dimensional Tokamak magnetohydrodynamical code (CLTx). Through combination of OpenACC and MPI technologies, CLTx is further parallelized by using multiple-GPUs. Significant speedup ratios are achieved on NVIDIA TITAN Xp and TITAN V GPUs, respectively, with very few modifications of CLTx. Furthermore, the validity of the double precision calculations on the above-mentioned two graphics cards has also been strictly verified with m/n=2/1 resistive tearing mode instability in Tokamak.
The modelling of interface migration and the associated diffusion mechanisms at the nanoscale level is a challenging issue. For many technological applications ranging from nanoelectronic devices to solar cells, more knowledge of the mechanisms gover ning the migration of the silicon amorphous/crystalline interface and dopant diffusion during solid phase epitaxy is needed. In this work, silicon recrystallisation in the framework of solid phase epitaxy and the influence on orientation effects have been investigated at the atomic level using empirical molecular dynamics simulations. The morphology and the migration process of the interface has been observed to be highly dependent on the original inter-facial atomic structure. The [100] interface migration is a quasi-planar ideal process whereas the cases [110] and [111] are much more complex with a more diffuse interface. For [110], the interface migration corresponds to the formation and dissolution of nanofacets whereas for [111] a defective based bilayer reordering is the dominant re-growth process. The study of the interface velocity migration in the ideal case of defect free re-growth reveals no difference between [100] and [110] and a decrease by a mean factor of 1.43 for the case [111]. Finally, the influence of boron atoms in the amorphous part on the interface migration velocity is also investigated in the case of [100] orientation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا