ترغب بنشر مسار تعليمي؟ اضغط هنا

Air pollution modelling using a graphics processing unit with CUDA

109   0   0.0 ( 0 )
 نشر من قبل Istvan Lagzi
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Graphics Processing Unit (GPU) is a powerful tool for parallel computing. In the past years the performance and capabilities of GPUs have increased, and the Compute Unified Device Architecture (CUDA) - a parallel computing architecture - has been developed by NVIDIA to utilize this performance in general purpose computations. Here we show for the first time a possible application of GPU for environmental studies serving as a basement for decision making strategies. A stochastic Lagrangian particle model has been developed on CUDA to estimate the transport and the transformation of the radionuclides from a single point source during an accidental release. Our results show that parallel implementation achieves typical acceleration values in the order of 80-120 times compared to CPU using a single-threaded implementation on a 2.33 GHz desktop computer. Only very small differences have been found between the results obtained from GPU and CPU simulations, which are comparable with the effect of stochastic transport phenomena in atmosphere. The relatively high speedup with no additional costs to maintain this parallel architecture could result in a wide usage of GPU for diversified environmental applications in the near future.



قيم البحث

اقرأ أيضاً

126 - Ji Xu , Ying Ren , Wei Ge 2010
Molecular dynamics (MD) simulation is a powerful computational tool to study the behavior of macromolecular systems. But many simulations of this field are limited in spatial or temporal scale by the available computational resource. In recent years, graphics processing unit (GPU) provides unprecedented computational power for scientific applications. Many MD algorithms suit with the multithread nature of GPU. In this paper, MD algorithms for macromolecular systems that run entirely on GPU are presented. Compared to the MD simulation with free software GROMACS on a single CPU core, our codes achieve about 10 times speed-up on a single GPU. For validation, we have performed MD simulations of polymer crystallization on GPU, and the results observed perfectly agree with computations on CPU. Therefore, our single GPU codes have already provided an inexpensive alternative for macromolecular simulations on traditional CPU clusters and they can also be used as a basis to develop parallel GPU programs to further speedup the computations.
241 - H. W. Zhang , J. Zhu , Z. W. Ma 2018
In this paper, the OpenACC heterogeneous parallel programming model is successfully applied to modification and acceleration of the three-dimensional Tokamak magnetohydrodynamical code (CLTx). Through combination of OpenACC and MPI technologies, CLTx is further parallelized by using multiple-GPUs. Significant speedup ratios are achieved on NVIDIA TITAN Xp and TITAN V GPUs, respectively, with very few modifications of CLTx. Furthermore, the validity of the double precision calculations on the above-mentioned two graphics cards has also been strictly verified with m/n=2/1 resistive tearing mode instability in Tokamak.
The predominance of Kohn-Sham density functional theory (KS-DFT) for the theoretical treatment of large experimentally relevant systems in molecular chemistry and materials science relies primarily on the existence of efficient software implementatio ns which are capable of leveraging the latest advances in modern high performance computing (HPC). With recent trends in HPC leading towards in increasing reliance on heterogeneous accelerator based architectures such as graphics processing units (GPU), existing code bases must embrace these architectural advances to maintain the high-levels of performance which have come to be expected for these methods. In this work, we purpose a three-level parallelism scheme for the distributed numerical integration of the exchange-correlation (XC) potential in the Gaussian basis set discretization of the Kohn-Sham equations on large computing clusters consisting of multiple GPUs per compute node. In addition, we purpose and demonstrate the efficacy of the use of batched kernels, including batched level-3 BLAS operations, in achieving high-levels of performance on the GPU. We demonstrate the performance and scalability of the implementation of the purposed method in the NWChemEx software package by comparing to the existing scalable CPU XC integration in NWChem.
The Kernel Polynomial Method (KPM) is one of the fast diagonalization methods used for simulations of quantum systems in research fields of condensed matter physics and chemistry. The algorithm has a difficulty to be parallelized on a cluster compute r or a supercomputer due to the fine-gain recursive calculations. This paper proposes an implementation of the KPM on the recent graphics processing units (GPU) where the recursive calculations are able to be parallelized in the massively parallel environment. This paper also illustrates performance evaluations regarding the cases when the actual simulation parameters are applied, the one for increased intensive calculations and the one for increased amount of memory usage. Finally, it concludes that the performance on GPU promises very high performance compared to the one on CPU and reduces the overall simulation time.
275 - Duncan Lee , Gavin Shaddick 2012
The relationship between short-term exposure to air pollution and mortality or morbidity has been the subject of much recent research, in which the standard method of analysis uses Poisson linear or additive models. In this paper we use a Bayesian dy namic generalised linear model (DGLM) to estimate this relationship, which allows the standard linear or additive model to be extended in two ways: (i) the long-term trend and temporal correlation present in the health data can be modelled by an autoregressive process rather than a smooth function of calendar time; (ii) the effects of air pollution are allowed to evolve over time. The efficacy of these two extensions are investigated by applying a series of dynamic and non-dynamic models to air pollution and mortality data from Greater London. A Bayesian approach is taken throughout, and a Markov chain monte carlo simulation algorithm is presented for inference. An alternative likelihood based analysis is also presented, in order to allow a direct comparison with the only previous analysis of air pollution and health data using a DGLM.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا