ترغب بنشر مسار تعليمي؟ اضغط هنا

The peculiar high-mass X-ray binary 1ES 1210-646

137   0   0.0 ( 0 )
 نشر من قبل Nicola Masetti
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using data collected with the BeppoSAX, INTEGRAL and Swift satellites, we report and discuss the results of a study on the X-ray emission properties of the X-ray source 1ES 1210-646, recently classified as a high-mass X-ray binary through optical spectroscopy. This is the first in-depth analysis of the X-ray spectral characteristics of this source. We found that the flux of 1ES 1210-646 varies by a factor of about 3 on a timescale of hundreds of seconds and by a factor of at least 10 among observations acquired over a time span of several months. The X-ray spectrum of 1ES 1210-646 is described using a simple powerlaw shape or, in the case of INTEGRAL data, with a blackbody plus powerlaw model. Spectral variability is found in connection with different flux levels of the source. A strong and transient iron emission line with an energy of about 6.7 keV and an equivalent width of about 1.6 keV is detected when the source is found at an intermediate flux level. The line strength seems to be tied to the orbital motion of the accreting object, as this feature is only apparent at the periastron. Although the X-ray spectral description we find for the 1ES 1210-646 emission is quite atypical for a high-mass X-ray binary, the multiwavelegth information available for this object leads us to confirm this classification. The results presented here allow us instead to definitely rule out the possibility that 1ES 1210-646 is a (magnetic) cataclysmic variable as proposed previously and, in a broader sense, a white dwarf nature for the accretor is disfavoured. X-ray spectroscopic data actually suggest a neutron star with a low magnetic field as the accreting object in this system.



قيم البحث

اقرأ أيضاً

We present our analysis of high quality high mass X-ray binary (HMXB) candidates in M31 selected from point-source optical-counterpart candidates from the Chandra-PHAT survey catalog. We fit the spectral energy distributions (SEDs) of optical counter part candidates using the Bayesian Extinction and Stellar Tool (BEAST). We used the best-fit luminosity, effective temperature, radius and dust reddening for the companion stars in combination with the local star formation history, dust maps of M31, published X-ray spectral fits from XMM-Newton observations, IR colors, and Chandra X-ray hardness ratios to determine our best sample of HMXB candidates. The age distribution of the HMXB sample appears peaked between 10 and 50 Myr, consistent with findings in other nearby galaxies. Using the age distribution and mean SFR, we find that 80$-$136 HMXBs were produced per unit of star formation rate over the last 50 Myr and 89$-$163 HMXBs were produced per unit of star formation rate over the last 80 Myr, if we expand the assumed age limit beyond the lifetimes of single massive stars. We also calculate the HMXB production rate (HMXBs/M$_{odot}$) over time, which ranges from $7 times 10^{-7}$ to $4 times 10^{-6}$ HMXBs/M$_{odot}$ over the last 80 Myr, in agreement with both theoretical predictions and measured production rates in other galaxies.
Bright and eclipsing, the high-mass X-ray binary Vela X-1 offers a unique opportunity to study accretion onto a neutron star from clumpy winds of O/B stars and to disentangle the complex accretion geometry of these systems. In Chandra-HETGS spectrosc opy at orbital phase ~0.25, when our line of sight towards the source does not pass through the large-scale accretion structure such as the accretion wake, we observe changes in overall spectral shape on timescales of a few kiloseconds. This spectral variability is, at least in part, caused by changes in overall absorption and we show that such strongly variable absorption cannot be caused by unperturbed clumpy winds of O/B stars. We detect line features from high and low ionization species of silicon, magnesium and neon whose strengths and presence depend on the overall level of absorption. They imply a co-existence of cool and hot gas phases in the system that we interpret as a highly variable, structured accretion flow close to the compact object such as has been recently seen in simulations of wind accretion in high-mass X-ray binaries.
The source IGR J17200-3116 was discovered in the hard X-ray band by INTEGRAL. A periodic X-ray modulation at ~326 s was detected in its Swift light curves by our group (and subsequently confirmed by a Swift campaign). In this paper, we report on the analysis of all the Swift observations, which were collected between 2005 and 2011, and of a ~20 ks XMM-Newton pointing that was carried out in 2013 September. During the years covered by the Swift and XMM-Newton observations, the 1-10 keV fluxes range from ~1.5 to 4E-11 erg/cm^2/s. IGR J17200-3116 displays spectral variability as a function of the pulse phase and its light curves show at least one short (a few hundreds of seconds) dip, during which the flux dropped at 20-30% of the average level. Overall, the timing and spectral characteristics of IGR J17200-3116 point to an accreting neutron star in a high-mass system but, while the pulse-phase spectral variability can be accounted for by assuming a variable local absorbing column density, the origin of the dip is unclear. We discuss different possible explanations for this feature, favouring a transition to an ineffective accretion regime, instead of an enhanced absorption along the line of sight.
We have analyzed 3 observations of the High Mass X-ray Binary A0535+26 performed by the Rossi X-ray Timing Explorer (RXTE) 3, 5, and 6 months after the last outburst in 2011 February. We detect pulsations only in the second observation. The 3-20 keV spectra can be fit equally well with either an absorbed power law or absorbed thermal bremsstrahlung model. Re-analysis of 2 earlier RXTE observations made 4 years after the 1994 outburst, original BeppoSAX observations 2 years later, re-analysis of 4 EXOSAT observations made 2 years after the last 1984 outburst, and a recent XMM-Newton observation in 2012 reveal a stacked, quiescent flux level decreasing from ~2 to <1 x 10^{-11} ergs/cm2/s over 6.5 years after outburst. Detection of pulsations during half of the quiescent observations would imply that accretion onto the magnetic poles of the neutron star continues despite the fact that the circumstellar disk may no longer be present. The accretion could come from material built-up at the corotation radius or from an isotropic stellar wind.
1ES 1927+654 is a nearby active galactic nucleus (AGN) which underwent a changing-look event in early 2018, developing prominent broad Balmer lines which were absent in previous observations. We have followed up this object in the X-rays with an ongo ing campaign that started in May 2018, and that includes 265 NICER (for a total of 678ks) and 14 Swift/XRT (26ks) observations, as well as three simultaneous XMM-Newton/NuSTAR (158/169 ks) exposures. In the X-rays, 1ES 1927+654 shows a behaviour unlike any previously known AGN. The source is extremely variable both in spectral shape and flux, and does not show any correlation between X-ray and UV flux on timescales of hours or weeks/months. After the outburst the power-law component almost completely disappeared, and the source showed an extremely soft continuum dominated by a blackbody component. The temperature of the blackbody increases with the luminosity, going from $kTsim 80$eV (for a 0.3--2keV luminosity of $L_{0.3-2}sim 10^{41.5}rm,erg,s^{-1}$) to $sim 200$eV (for $L_{0.3-2}sim 10^{44}rm,erg,s^{-1}$). The spectra show evidence of ionized outflows, and of a prominent feature at $sim 1$keV, which can be reproduced by a broad emission line. The unique characteristics of 1ES 1927+654 in the X-ray band suggest that it belongs to a new type of changing-look AGN. Future X-ray surveys might detect several more objects with similar properties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا