ﻻ يوجد ملخص باللغة العربية
The Higgs boson decay into a pair of real or virtual W bosons, with one of them decaying leptonically, is predicted within the Standard Model to have the largest branching fraction of all Higgs decays that involve an isolated electron or muon, for M_h > 120 GeV. We compute analytically the fully-differential width for this h -> l u jj decay at tree level, and then explore some multi-dimensional cuts that preserve the region of large signal. Future searches for semileptonic decays at the Tevatron and LHC, employing fully-differential information as outlined here, may be essential for ruling out or in the Higgs boson and for characterizing a Higgs signal.
We examine the prospects for extending the Tevatron reach for a Standard Model Higgs boson by including the semileptonic Higgs boson decays h --> WW --> l nu jj for M_h >~ 2 M_W, and h --> W jj --> l nu jj for M_h <~ 2 M_W, where j is a hadronic jet.
We consider the possibility that the heavier CP-even Higgs boson~($H^0$) in the minimal supersymmetric standard model (MSSM) decays invisibly into neutralinos in the light of the recent discovery of the 126 GeV resonance at the CERN Large Hadron Coll
We study the lightest Higgs boson decays $hrightarrow MZ$ in the framework of the $mu$ from $ u$ supersymmetric standard model ($mu u$SSM), where $M$ is a vector meson $(rho,omega,phi,J/Psi,Upsilon)$. Compared to the minimal supersymmetric standard m
We study the decay of a heavy Higgs boson into a light Higgs pair at one loop in the singlet extension of the Standard Model. To this purpose, we construct several renormalization schemes for the extended Higgs sector of the model. We apply these sch
The analysis of the Higgs search results at LEP showed that a part of the MSSM parameter space with non-zero complex phases could not be excluded, where the lightest neutral Higgs boson, h_1, has a mass of only about 45 GeV and the second lightest ne